Abstract:
An electric device and a stator assembly for the electric device includes a stator core defining a plurality of slots spaced from each other. The stator assembly includes a plurality of bar conductors disposed in each of the slots and arranged to present a first winding path, a second winding path and a third winding path. A first set of the bar conductors of the first, second and third winding paths are configured to receive current in a parallel circuit arrangement. The stator assembly also includes a plurality of electrical jumpers electrically connected to a predetermined number of the bar conductors such that an amount of current flowing through the first winding path and the third winding path is substantially the same and an amount of current flowing through the second winding path is different from the amount of current flowing through the first and third winding paths.
Abstract:
An electric machine assembly includes an electric machine including a rotor. A controller operatively connected to the electric machine and configured to receive a torque command. The rotor is configured to rotate at a rotor speed (ω) based at least partially on the torque command. The controller has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a cumulative rotor fatigue (FC) based at least partially on the rotor speed. The controller is operative to control at least one operating paramater of the electric machine based at least partially on the cumulative rotor fatigue (FC). The controller is configured to record respective occurrences of the rotor stress value exceeding respective predefined stress levels in chronological order to create a cycle dataset, such that the cycle dataset preserves a time order of the respective occurrences.
Abstract:
A slot liner is configured for insertion into a slot of an electric machine. The slot liner is an integral piece configured to be folded along a first set of fold lines to define a plurality of liner segments in a folded configuration. The liner segments include first, second, third, fourth and fifth liner segments. The first and second liner segments are configured to be substantially parallel to one another in the folded configuration. The third and fourth liner segments are configured to be substantially parallel to one another in the folded configuration. The fifth liner segment extends between the third and fourth liner segments. The fifth liner segment is configured to be folded along a second set of fold lines to define a plurality of openings, including a first opening.
Abstract:
An electric machine assembly includes an electric machine including a rotor. A controller operatively connected to the electric machine and configured to receive a torque command. The rotor is configured to rotate at a rotor speed (ω) based at least partially on the torque command. The controller has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a cumulative rotor fatigue (FC) based at least partially on the rotor speed. The controller is operative to control at least one operating paramater of the electric machine based at least partially on the cumulative rotor fatigue (FC). The controller is configured to record respective occurrences of the rotor stress value exceeding respective predefined stress levels in chronological order to create a cycle dataset, such that the cycle dataset preserves a time order of the respective occurrences.
Abstract:
An electric device and a stator assembly for the electric device includes a stator core defining a plurality of slots spaced from each other. The stator assembly includes a plurality of bar conductors disposed in each of the slots and arranged to present a first winding path, a second winding path and a third winding path. A first set of the bar conductors of the first, second and third winding paths are configured to receive current in a parallel circuit arrangement. The stator assembly also includes a plurality of electrical jumpers electrically connected to a predetermined number of the bar conductors such that an amount of current flowing through the first winding path and the third winding path is substantially the same and an amount of current flowing through the second winding path is different from the amount of current flowing through the first and third winding paths.