Abstract:
A system and method for determining whether a driver is holding a vehicle steering wheel. The vehicle will include an electric power steering system and may further include autonomous or semi-autonomous driving features, such as Lane Centering Control or Lane Keeping Assist. The system includes a passive detection technique which monitors steering torque and steering angle, determines a resonant frequency of oscillation of the steering system from the measured data, and compares the resonant frequency to a known steering system natural frequency to make a hands-on/off determination. If the passive technique results are below a confidence threshold, then an active technique is employed which provides a steering angle perturbation and measures the frequency response, where the perturbation signal has characteristics which are prescribed based on the results of the passive technique. A steering torque greater than a threshold value is also an indication of the driver holding the steering wheel.
Abstract:
A system and method for determining whether a driver is holding a vehicle steering wheel. The vehicle will include an electric power steering system and may further include autonomous or semi-autonomous driving features, such as Lane Centering Control or Lane Keeping Assist. The system includes a passive detection technique which monitors steering torque and steering angle, determines a resonant frequency of oscillation of the steering system from the measured data, and compares the resonant frequency to a known steering system natural frequency to make a hands-on/off determination. If the passive technique results are below a confidence threshold, then an active technique is employed which provides a steering angle perturbation and measures the frequency response, where the perturbation signal has characteristics which are prescribed based on the results of the passive technique. A steering torque greater than a threshold value is also an indication of the driver holding the steering wheel.
Abstract:
Methods and apparatus are provided for moving a receiver associated with a hitch frame of a vehicle. The method includes receiving data indicating a hand wheel angle; determining, with a processor, a position for the receiver relative to the hitch frame based on the hand wheel angle; and outputting one or more control signals to a motor coupled to the receiver to move the receiver relative to a longitudinal axis of the vehicle based on the determination.
Abstract:
Methods and systems are provided for controlling a steering system of a vehicle is provided. A detection unit is configured to obtain one or more of the following values: a compass heading, a global positioning system (GPS) heading, a yaw velocity, and a difference in tire angular velocities. A processor is coupled to the detection unit, and is configured to determine whether a vehicle is on a straight line path using one or more of the compass heading, the GPS heading, the yaw velocity, and the difference in tire angular velocities, activate the steering system if it is determined that the vehicle is on a straight line path, and disable the feature of the steering system if it is determined that the vehicle is not on a straight line path.
Abstract:
Methods and systems are provided for aligning a steering system of a vehicle. In one embodiment, a method includes: determining when the vehicle is driving a straight-line path; determining a steering wheel position error when the vehicle is driving the straight-line path; computing a rear wheel steering offset based on the steering wheel position error and a closed loop control method; and generating a control signal to a rear wheel steering system based on the rear wheel steering offset.
Abstract:
Methods and systems are provided for controlling a steering system of a vehicle is provided. A detection unit is configured to obtain a compass heading, a global positioning system (GPS) heading, or both. A processor is coupled to the detection unit, and is configured to determine whether a vehicle is on a straight line path using the compass heading, the GPS heading, or both, and to selectively implement a feature of the steering system based on whether it is determined that the vehicle is not on a straight line path.
Abstract:
A method and system for determining whether a driver of a vehicle is in contact with a steering wheel of the vehicle is provided. One embodiment of the method includes the steps of generating a perturbation signal that causes vibration of the steering wheel and receiving a steering signal from a steering system sensor configured to provide an indication of at least one of a steering torque and a steering movement of a component of an electronic power steering system of the vehicle. The method further includes the steps of mixing the perturbation signal and the steering signal to produce a heterodyne signal and generating a driver contact signal indicative of whether the driver of the vehicle is in contact with the steering wheel of the vehicle, the value of the driver contact signal dependent on characteristics of the heterodyne signal relating to the perturbation signal.