Abstract:
A method for automated lane centering and/or lane changing purposes for a vehicle traveling on a roadway that employs roadway points from a map database to determine a reference vehicle path and sensors on the vehicle for detecting static and moving objects to adjust the reference path. The method includes reducing the curvature of the reference path to generate a reduced curvature reference path that reduces the turning requirements of the vehicle and setting the speed of the vehicle from posted roadway speeds from the map database. The method also includes providing multiple candidate vehicle paths and vehicle speeds to avoid the static and moving objects in front of the vehicle.
Abstract:
A method for providing vehicle steering control through a curve in an autonomously driven or semi-autonomously driven vehicle that is towing a trailer. The method determines that the trailer will cross out of the travel lane based on the curvature of the curve and the turn radius of the trailer. The method calculates a start turn radius of the vehicle for a start location of the curve, an end turn radius of the vehicle for an end location of the curve, and a turn end point proximate the end location or a turn start point proximate the start location. The method provides initial and boundary conditions for determining a desired path of the vehicle through the curve that prevents the trailer from crossing out of the lane and determines the desired path based on the initial and boundary conditions by solving a polynomial equation.
Abstract:
A method, for controlling direction of a vehicle as desired in connection with operation of an autonomous driving maneuver using selectively, independently and/or in combination, multiple electrical park brakes (EPBs) and multiple hydraulic brakes (HBs). The method includes determining a total brake force needed for redirecting the vehicle in a pre-determined manner, and determining whether an applicable EPB can provide the total brake force needed. The method further includes providing, if it is determined that the applicable EPB can provide the total brake force needed, a brake command instructing the applicable EPB to apply the total brake force. The method also includes determining, if it is determined that the EPB is alone insufficient, an optimal fusion of the EPBs and the HBs, including two front and two rear HBs, two rear EPBs, and in some embodiments, also two front EPBs.
Abstract:
A method for providing a warning that a trailer being towed by a vehicle will cross out of a travel lane when in a curve for the current vehicle path prior to the vehicle entering the curve. The method determines that the vehicle is approaching the curve, determines a radius of curvature of the curve, determines a lane width of the travel lane, and identifying a length of the trailer. The method also determines a predicted steering angle of the vehicle necessary to follow the radius of curvature of the curve, a turn radius of the vehicle for traveling through the curve using the predicted steering angle, and a turn radius of the trailer using the turn radius of the vehicle. The method then determines whether the trailer will cross out of the travel lane based on the curvature of the curve and the turn radius of the trailer.
Abstract:
Systems and method are provided for controlling a vehicle. In one embodiment, a method includes receiving, via a processor, image data of a surroundings of the vehicle. The method includes performing, via a processor, image analysis on the image data to identify road features. The method includes matching, via a processor, the identified road features to road features in a predetermined map to determine matched road features. The method includes determining, via a processor, global positioning data for the vehicle based on global positioning data in the predetermined map and the matched road features. The method also includes calibrating, via a processor, effective rolling radius of a wheel of the vehicle based at least on the global position data. The method further includes controlling, via a processor, a function of the vehicle based, in part, on the effective rolling radius.
Abstract:
Vehicles and steering systems for vehicles are provided. An exemplary steering system is provided for an automotive vehicle that includes road wheels and a rack mechanically coupled to the road wheels and laterally displaceable to change an orientation of the road wheels. The steering system includes a steering wheel mounted on a steering column and rotatable by a driver for inputting a steering command. The steering system also includes a lower column coupled to the rack. In the steering system, lateral displacement of the rack causes a rotational torque on the lower column. The steering system further includes a magneto-rheological coupling interconnected between the steering column and the lower column. The magneto-rheological coupling selectively communicates a desired portion of the rotational torque on the lower column to the steering column to provide haptic feedback to the steering column.
Abstract:
A method for performing autonomous operation of a vehicle is provided. The method identifies, by at least one processor, an error condition of an electric power steering (EPS) device onboard the vehicle; obtains, by the at least one processor, input trajectory data for the autonomous operation of the vehicle; calculates, by the at least one processor, a feedforward rear steer angle, based on the input trajectory data; calculates, by the at least one processor, a feedback signal of the feedforward rear steer angle; calculates, by the at least one processor, a final steer angle command, using the feedforward rear steer angle and the feedback signal; and operates a steering mechanism of the vehicle using the final steer angle command, to autonomously maneuver the vehicle according to the final steer angle command.
Abstract:
A system and method for determining whether a driver is holding a vehicle steering wheel. The vehicle will include an electric power steering system and may further include autonomous or semi-autonomous driving features, such as Lane Centering Control or Lane Keeping Assist. The system includes a passive detection technique which monitors steering torque and steering angle, determines a resonant frequency of oscillation of the steering system from the measured data, and compares the resonant frequency to a known steering system natural frequency to make a hands-on/off determination. If the passive technique results are below a confidence threshold, then an active technique is employed which provides a steering angle perturbation and measures the frequency response, where the perturbation signal has characteristics which are prescribed based on the results of the passive technique. A steering torque greater than a threshold value is also an indication of the driver holding the steering wheel.
Abstract:
An anticipatory speed-control system and method for generating a speed profile in real time by iteratively calculating proposed reduced speeds associated with an electronically identified target curve until the proposed speed is compliant with a lateral-acceleration-based comfort metric and a steering-angle-based safety metric and implementing the speed profile in accordance with a longitudinal comfort metric and providing a user with override options.
Abstract:
A system and method of autonomously steering a vehicle responsively to failure of a lane-centering system through time-dependent steering angle correction to reduce jerk resulting from transition of steering control from a lane-centering system to a lane-keeping system or vise-versa.