Abstract:
Systems and methods for content selection with precision controls include receiving a content selection parameter value and a degree of precision specified by a content provider. A content selection parameter value for a device identifier may be predicted using a predictive model. A precision factor may be associated with the predicted content selection parameter value. Content from the provider may be selected based on a comparison between the predicted selection parameter value and precision factor for the device identifier and the selection parameter value and degree of precision specified by the content provider.
Abstract:
A computer-implemented method for determining an attribute for an online user of a candidate computing device is provided. The method implemented uses a host computing device. The method includes identifying a first set of model data including device data from a plurality of model computing devices including location data and access data, and a plurality of categories for an attribute of a population segment including an online user. Each category defines a segment of the attribute. The method further includes training a classification model by the host computing device with at least the first set of model data and the plurality of categories. The method also includes identifying device data associated with the candidate computing device. The method further includes applying the device data of the candidate computing device to the classification model to determine a category of the plurality of categories for the online user.
Abstract:
Systems and methods for content selection with precision controls include receiving device identifier data from multiple sources. A machine learning model may be applied to the device identifier data and content selection parameter values may be predicted. Percentiles for the predicted content selection parameter values may be analyzed to determine precision factors for the predicted content selection parameter values.