-
公开(公告)号:US20250153363A1
公开(公告)日:2025-05-15
申请号:US19025627
申请日:2025-01-16
Applicant: GOOGLE LLC
Inventor: Seyed Mohammad Khansari Zadeh , Eric Jang , Daniel Lam , Daniel Kappler , Matthew Bennice , Brent Austin , Yunfei Bai , Sergey Levine , Alexander Irpan , Nicolas Sievers , Chelsea Finn
Abstract: Implementations described herein relate to training and refining robotic control policies using imitation learning techniques. A robotic control policy can be initially trained based on human demonstrations of various robotic tasks. Further, the robotic control policy can be refined based on human interventions while a robot is performing a robotic task. In some implementations, the robotic control policy may determine whether the robot will fail in performance of the robotic task, and prompt a human to intervene in performance of the robotic task. In additional or alternative implementations, a representation of the sequence of actions can be visually rendered for presentation to the human can proactively intervene in performance of the robotic task.
-
公开(公告)号:US12226920B2
公开(公告)日:2025-02-18
申请号:US18233251
申请日:2023-08-11
Applicant: GOOGLE LLC
Inventor: Seyed Mohammad Khansari Zadeh , Eric Jang , Daniel Lam , Daniel Kappler , Matthew Bennice , Brent Austin , Yunfei Bai , Sergey Levine , Alexander Irpan , Nicolas Sievers , Chelsea Finn
Abstract: Implementations described herein relate to training and refining robotic control policies using imitation learning techniques. A robotic control policy can be initially trained based on human demonstrations of various robotic tasks. Further, the robotic control policy can be refined based on human interventions while a robot is performing a robotic task. In some implementations, the robotic control policy may determine whether the robot will fail in performance of the robotic task, and prompt a human to intervene in performance of the robotic task. In additional or alternative implementations, a representation of the sequence of actions can be visually rendered for presentation to the human can proactively intervene in performance of the robotic task.
-
公开(公告)号:US20240190004A1
公开(公告)日:2024-06-13
申请号:US18582266
申请日:2024-02-20
Applicant: GOOGLE LLC
Inventor: Yunfei Bai , Tigran Gasparian , Brent Austin , Andreas Christiansen , Matthew Bennice , Paul Bechard
IPC: B25J9/16
CPC classification number: B25J9/1671 , B25J9/1661 , B25J9/1697
Abstract: Active utilization of a robotic simulator in control of one or more real world robots. A simulated environment of the robotic simulator can be configured to reflect a real world environment in which a real robot is currently disposed, or will be disposed. The robotic simulator can then be used to determine a sequence of robotic actions for use by the real world robot(s) in performing at least part of a robotic task. The sequence of robotic actions can be applied, to a simulated robot of the robotic simulator, to generate a sequence of anticipated simulated state data instances. The real robot can be controlled to implement the sequence of robotic actions. The implementation of one or more of the robotic actions can be contingent on a real state data instance having at least a threshold degree of similarity to a corresponding one of the anticipated simulated state data instances.
-
公开(公告)号:US11938638B2
公开(公告)日:2024-03-26
申请号:US17337815
申请日:2021-06-03
Applicant: GOOGLE LLC
Inventor: Yunfei Bai , Tigran Gasparian , Brent Austin , Andreas Christiansen , Matthew Bennice , Paul Bechard
IPC: B25J9/16
CPC classification number: B25J9/1671 , B25J9/1661 , B25J9/1697
Abstract: Active utilization of a robotic simulator in control of one or more real world robots. A simulated environment of the robotic simulator can be configured to reflect a real world environment in which a real robot is currently disposed, or will be disposed. The robotic simulator can then be used to determine a sequence of robotic actions for use by the real world robot(s) in performing at least part of a robotic task. The sequence of robotic actions can be applied, to a simulated robot of the robotic simulator, to generate a sequence of anticipated simulated state data instances. The real robot can be controlled to implement the sequence of robotic actions. The implementation of one or more of the robotic actions can be contingent on a real state data instance having at least a threshold degree of similarity to a corresponding one of the anticipated simulated state data instances.
-
5.
公开(公告)号:US20230381970A1
公开(公告)日:2023-11-30
申请号:US18233251
申请日:2023-08-11
Applicant: GOOGLE LLC
Inventor: Seyed Mohammad Khansari Zadeh , Eric Jang , Daniel Lam , Daniel Kappler , Matthew Bennice , Brent Austin , Yunfei Bai , Sergey Levine , Alexander Irpan , Nicolas Sievers , Chelsea Finn
CPC classification number: B25J9/1697 , B25J9/163 , B25J9/1661 , B25J9/161 , B25J13/06
Abstract: Implementations described herein relate to training and refining robotic control policies using imitation learning techniques. A robotic control policy can be initially trained based on human demonstrations of various robotic tasks. Further, the robotic control policy can be refined based on human interventions while a robot is performing a robotic task. In some implementations, the robotic control policy may determine whether the robot will fail in performance of the robotic task, and prompt a human to intervene in performance of the robotic task. In additional or alternative implementations, a representation of the sequence of actions can be visually rendered for presentation to the human can proactively intervene in performance of the robotic task.
-
公开(公告)号:US11772272B2
公开(公告)日:2023-10-03
申请号:US17203296
申请日:2021-03-16
Applicant: GOOGLE LLC
Inventor: Seyed Mohammad Khansari Zadeh , Eric Jang , Daniel Lam , Daniel Kappler , Matthew Bennice , Brent Austin , Yunfei Bai , Sergey Levine , Alexander Irpan , Nicolas Sievers , Chelsea Finn
CPC classification number: B25J9/1697 , B25J9/161 , B25J9/163 , B25J9/1661 , B25J13/06
Abstract: Implementations described herein relate to training and refining robotic control policies using imitation learning techniques. A robotic control policy can be initially trained based on human demonstrations of various robotic tasks. Further, the robotic control policy can be refined based on human interventions while a robot is performing a robotic task. In some implementations, the robotic control policy may determine whether the robot will fail in performance of the robotic task, and prompt a human to intervene in performance of the robotic task. In additional or alternative implementations, a representation of the sequence of actions can be visually rendered for presentation to the human can proactively intervene in performance of the robotic task.
-
-
-
-
-