Abstract:
A language processing system identifies sequential command inputs in user session data stored in logs. Each sequence command input is a first command input followed by a second command input. The system determines user actions in response to each command input. For the second command input, an action was taken at the user device in response to the command input, and there is no parsing rule associated with the action that parses to the first command input. If there is a sufficient co-occurrence of the first and second command inputs and the resulting action in the logs, then a parsing rule for the action may be augmented with a rule for the first command input.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling of complete language sequences. Training data indicating language sequences is accessed, and counts for a number of times each language sequence occurs in the training data are determined. A proper subset of the language sequences is selected, and a first component of a language model is trained. The first component includes first probability data for assigning scores to the selected language sequences. A second component of the language model is trained based on the training data, where the second component includes second probability data for assigning scores to language sequences that are not included in the selected language sequences. Adjustment data that normalizes the second probability data with respect to the first probability data is generated, and the first component, the second component, and the adjustment data are stored.
Abstract:
A method identifies pairs of first and second command inputs from respective user device sessions for which the first and second operation data are indicative of a first operation failure and a second operation success. The first operation data indicate a first operation performed on data from a first resource property in response to the first command input, and the second operation data indicate a second operation performed on data from a second resource property in response to the second command input. They system determines, from the identified pairs of first and second command inputs, command inputs for which a parsing rule that is associated with the second operation is to be generated.
Abstract:
A method identifies pairs of first and second command inputs from respective user device sessions for which the first and second operation data are indicative of a first operation failure and a second operation success. The first operation data indicate a first operation performed on data from a first resource property in response to the first command input, and the second operation data indicate a second operation performed on data from a second resource property in response to the second command input. They system determines, from the identified pairs of first and second command inputs, command inputs for which a parsing rule that is associated with the second operation is to be generated.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for using non-parametric models in speech recognition. In some implementations, speech data is accessed. The speech data represents utterances of a particular phonetic unit occurring in a particular phonetic context, and the speech data includes values for multiple dimensions. Boundaries are determined for a set of quantiles for each of the multiple dimensions. Models for the distribution of values within the quantiles are generated. A multidimensional probability function is generated. Data indicating the boundaries of the quantiles, the models for the distribution of values in the quantiles, and the multidimensional probability function are stored.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for improved pronunciation. One of the methods includes receiving data that represents an audible pronunciation of the name of an individual from a user device. The method includes identifying one or more other users that are members of a social circle that the individual is a member. The method includes identifying one or more devices associated with the other users. The method also includes providing information that identifies the individual and the data representing the audible pronunciation to the one or more identified devices.
Abstract:
In one example, a method includes: receiving from a first user interface a first input from a first user specifying a first particular instant in a video other than a beginning of the video; in response to the first input, generating by one or more computer systems first data for inclusion in a link to the video, the first data representing the first particular instant in the video and being operable automatically to direct playback of the video at a second user interface to start at the first particular instant in the video in response to a second user selecting the link at the second user interface; and communicating the first data to a link generator for inclusion in the link to the video.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for using non-parametric models in speech recognition. In some implementations, speech data is accessed. The speech data represents utterances of a particular phonetic unit occurring in a particular phonetic context, and the speech data includes values for multiple dimensions. Boundaries are determined for a set of quantiles for each of the multiple dimensions. Models for the distribution of values within the quantiles are generated. A multidimensional probability function is generated. Data indicating the boundaries of the quantiles, the models for the distribution of values in the quantiles, and the multidimensional probability function are stored.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling of complete language sequences. Training data indicating language sequences is accessed, and counts for a number of times each language sequence occurs in the training data are determined. A proper subset of the language sequences is selected, and a first component of a language model is trained. The first component includes first probability data for assigning scores to the selected language sequences. A second component of the language model is trained based on the training data, where the second component includes second probability data for assigning scores to language sequences that are not included in the selected language sequences. Adjustment data that normalizes the second probability data with respect to the first probability data is generated, and the first component, the second component, and the adjustment data are stored.