Parsing rule augmentation based on query sequence and action co-occurrence
    1.
    发明授权
    Parsing rule augmentation based on query sequence and action co-occurrence 有权
    基于查询序列和动作共现分析规则增强

    公开(公告)号:US09299339B1

    公开(公告)日:2016-03-29

    申请号:US13926795

    申请日:2013-06-25

    Applicant: Google Inc.

    CPC classification number: G06F17/2705 G10L15/19 G10L15/22

    Abstract: A language processing system identifies sequential command inputs in user session data stored in logs. Each sequence command input is a first command input followed by a second command input. The system determines user actions in response to each command input. For the second command input, an action was taken at the user device in response to the command input, and there is no parsing rule associated with the action that parses to the first command input. If there is a sufficient co-occurrence of the first and second command inputs and the resulting action in the logs, then a parsing rule for the action may be augmented with a rule for the first command input.

    Abstract translation: 语言处理系统识别存储在日志中的用户会话数据中的顺序命令输入。 每个序列命令输入都是第一个命令输入,后跟第二个命令输入。 系统根据每个命令输入确定用户动作。 对于第二个命令输入,响应于命令输入在用户设备上采取了一个操作,并且没有与解析到第一个命令输入的操作相关联的解析规则。 如果在日志中存在足够的第一和第二命令输入和所产生的动作的同时发生,则可以用第一命令输入的规则来增加动作的解析规则。

    Language modeling of complete language sequences

    公开(公告)号:US09786269B2

    公开(公告)日:2017-10-10

    申请号:US13875406

    申请日:2013-05-02

    Applicant: Google Inc.

    CPC classification number: G10L15/063 G10L15/197

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling of complete language sequences. Training data indicating language sequences is accessed, and counts for a number of times each language sequence occurs in the training data are determined. A proper subset of the language sequences is selected, and a first component of a language model is trained. The first component includes first probability data for assigning scores to the selected language sequences. A second component of the language model is trained based on the training data, where the second component includes second probability data for assigning scores to language sequences that are not included in the selected language sequences. Adjustment data that normalizes the second probability data with respect to the first probability data is generated, and the first component, the second component, and the adjustment data are stored.

    Inducing command inputs from property sequences
    3.
    发明授权
    Inducing command inputs from property sequences 有权
    从属性序列引导命令输入

    公开(公告)号:US09405849B1

    公开(公告)日:2016-08-02

    申请号:US15084166

    申请日:2016-03-29

    Applicant: Google Inc.

    CPC classification number: G06F17/30899 G06F17/2705

    Abstract: A method identifies pairs of first and second command inputs from respective user device sessions for which the first and second operation data are indicative of a first operation failure and a second operation success. The first operation data indicate a first operation performed on data from a first resource property in response to the first command input, and the second operation data indicate a second operation performed on data from a second resource property in response to the second command input. They system determines, from the identified pairs of first and second command inputs, command inputs for which a parsing rule that is associated with the second operation is to be generated.

    Abstract translation: 一种方法识别来自相应用户设备会话的第一和第二命令输入对,其中第一和第二操作数据表示第一操作失败和第二操作成功。 第一操作数据指示响应于第一命令输入对来自第一资源属性的数据执行的第一操作,并且第二操作数据响应于第二命令输入指示针对来自第二资源属性的数据执行的第二操作。 它们系统从所识别的第一和第二命令输入对确定要生成与第二操作相关联的解析规则的命令输入。

    Inducing command inputs from property sequences

    公开(公告)号:US09330195B1

    公开(公告)日:2016-05-03

    申请号:US13926836

    申请日:2013-06-25

    Applicant: Google Inc.

    CPC classification number: G06F17/30899 G06F17/2705

    Abstract: A method identifies pairs of first and second command inputs from respective user device sessions for which the first and second operation data are indicative of a first operation failure and a second operation success. The first operation data indicate a first operation performed on data from a first resource property in response to the first command input, and the second operation data indicate a second operation performed on data from a second resource property in response to the second command input. They system determines, from the identified pairs of first and second command inputs, command inputs for which a parsing rule that is associated with the second operation is to be generated.

    Speech recognition using non-parametric models
    5.
    发明授权
    Speech recognition using non-parametric models 有权
    使用非参数模型的语音识别

    公开(公告)号:US09336771B2

    公开(公告)日:2016-05-10

    申请号:US13895582

    申请日:2013-05-16

    Applicant: Google Inc.

    CPC classification number: G10L15/063 G10L15/144 G10L2015/025

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for using non-parametric models in speech recognition. In some implementations, speech data is accessed. The speech data represents utterances of a particular phonetic unit occurring in a particular phonetic context, and the speech data includes values for multiple dimensions. Boundaries are determined for a set of quantiles for each of the multiple dimensions. Models for the distribution of values within the quantiles are generated. A multidimensional probability function is generated. Data indicating the boundaries of the quantiles, the models for the distribution of values in the quantiles, and the multidimensional probability function are stored.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于在语音识别中使用非参数模型。 在一些实现中,访问语音数据。 语音数据表示在特定语音语境中出现的特定语音单元的话语,并且语音数据包括用于多个维度的值。 确定每个多维度的一组分位数的边界。 生成分位数内值分布的模型。 生成多维概率函数。 指示分位数边界的数据,分位数中的值分布模型和多维概率函数。

    PHONETIC PRONUNCIATION
    6.
    发明申请
    PHONETIC PRONUNCIATION 审中-公开
    电话宣传

    公开(公告)号:US20140074470A1

    公开(公告)日:2014-03-13

    申请号:US13948996

    申请日:2013-07-23

    Applicant: Google Inc.

    CPC classification number: G10L15/063 G10L15/187 G10L2015/025

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for improved pronunciation. One of the methods includes receiving data that represents an audible pronunciation of the name of an individual from a user device. The method includes identifying one or more other users that are members of a social circle that the individual is a member. The method includes identifying one or more devices associated with the other users. The method also includes providing information that identifies the individual and the data representing the audible pronunciation to the one or more identified devices.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于改进发音。 其中一种方法包括从用户设备接收表示个人名称的听觉发音的数据。 该方法包括识别作为该个体是成员的社交圈的成员的一个或多个其他用户。 该方法包括识别与其他用户相关联的一个或多个设备。 该方法还包括提供将个体和表示可听见的发音的数据标识给一个或多个所识别的设备的信息。

    SPEECH RECOGNITION USING NON-PARAMETRIC MODELS
    8.
    发明申请
    SPEECH RECOGNITION USING NON-PARAMETRIC MODELS 有权
    使用非参数模型的语音识别

    公开(公告)号:US20150371633A1

    公开(公告)日:2015-12-24

    申请号:US13895582

    申请日:2013-05-16

    Applicant: Google Inc.

    CPC classification number: G10L15/063 G10L15/144 G10L2015/025

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for using non-parametric models in speech recognition. In some implementations, speech data is accessed. The speech data represents utterances of a particular phonetic unit occurring in a particular phonetic context, and the speech data includes values for multiple dimensions. Boundaries are determined for a set of quantiles for each of the multiple dimensions. Models for the distribution of values within the quantiles are generated. A multidimensional probability function is generated. Data indicating the boundaries of the quantiles, the models for the distribution of values in the quantiles, and the multidimensional probability function are stored.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于在语音识别中使用非参数模型。 在一些实现中,访问语音数据。 语音数据表示在特定语音语境中出现的特定语音单元的话语,并且语音数据包括用于多个维度的值。 确定每个多维度的一组分位数的边界。 生成分位数内值分布的模型。 生成多维概率函数。 指示分位数边界的数据,分位数中的值分布模型和多维概率函数。

    LANGUAGE MODELING OF COMPLETE LANGUAGE SEQUENCES
    9.
    发明申请
    LANGUAGE MODELING OF COMPLETE LANGUAGE SEQUENCES 有权
    完整语言序列的语言建模

    公开(公告)号:US20140278407A1

    公开(公告)日:2014-09-18

    申请号:US13875406

    申请日:2013-05-02

    Applicant: Google Inc.

    CPC classification number: G10L15/063 G10L15/197

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling of complete language sequences. Training data indicating language sequences is accessed, and counts for a number of times each language sequence occurs in the training data are determined. A proper subset of the language sequences is selected, and a first component of a language model is trained. The first component includes first probability data for assigning scores to the selected language sequences. A second component of the language model is trained based on the training data, where the second component includes second probability data for assigning scores to language sequences that are not included in the selected language sequences. Adjustment data that normalizes the second probability data with respect to the first probability data is generated, and the first component, the second component, and the adjustment data are stored.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于完整语言序列的语言建模。 访问指示语言序列的训练数据,并且确定训练数据中出现每个语言序列多次的计数。 选择语言序列的适当子集,并训练语言模型的第一个组成部分。 第一组件包括用于将分数分配给所选择的语言序列的第一概率数据。 基于训练数据训练语言模型的第二组件,其中第二组件包括用于将分数分配给不包括在所选语言序列中的语言序列的第二概率数据。 生成相对于第一概率数据归一化第二概率数据的调整数据,并且存储第一分量,第二分量和调整数据。

Patent Agency Ranking