Abstract:
Systems, methods and computer storage apparatuses for synthesizing terrain elevations under overpasses are described herein. An embodiment includes identifying one or more spans across an overpass in an overpasses model, where the overpasses model includes information for one or more overpasses and respective locations and widths of the spans. The embodiment associates one or more terrain elevation values with the one or more identified spans, where the terrain elevation values can be included in an elevation model corresponding to the overpasses model. The embodiment further includes interpolating terrain elevation values for one or more points across the identified spans and updating the elevation model with the interpolated terrain elevation values.
Abstract:
Systems and methods for merging three-dimensional models, such as a three-dimensional range sensor-based model and a three-dimensional camera-based model, are provided. According to aspects of the present disclosure, an enhanced volumetric merging technique can be used to merge the three-dimensional models. A plurality of voxels can be constructed for a three-dimensional space. A first distance field can be propagated based on the range sensor-based model in an extended margin between the range sensor-based model and a range sensor viewpoint. A second distance field can be propagated based on the camera-based model for voxels in the extended margin. A cumulative distance field can be determined based at least in part on the first field and the second distance field. The merged three-dimensional model can be constructed from the cumulative distance field using, for instance, a suitable meshing algorithm.
Abstract:
Methods, systems, and computer program products are provided for determining camera parameters and three dimensional locations of features from a plurality of images of a geographic area. These include, detecting features in the plurality of images where each of the images cover at least a portion of the geographic area, comparing the detected features between respective ones of the images to determine a plurality of matched features, selecting a subset of the plurality of matched features, and determining the camera parameters and the three dimensional positions of one or more of the detected features using the selected subset. The respective matched features are selected depending on a quantity of other matched features in proximity to the respective matched features.
Abstract:
Methods and systems for generating data objects for multi-resolution geometry in a three-dimensional model are provided. A region of high resolution geometry in the three-dimensional model having a level of detail that is higher than a level of detail associated with geometry data surrounding the region of high resolution geometry can be identified. A boundary of the region of high resolution geometry can be extended and high resolution geometry can be generated within the extended boundary. The high resolution geometry can be spatially partitioned into a plurality of geospatial data objects according to a hierarchical spatial partitioning scheme. The geospatial data objects can be selectively stored in a memory. For instance, geospatial data objects associated with the extended boundary can be identified and excluded from a hierarchical tree data structure storing geometry data associated with the three-dimensional model.
Abstract:
Methods, systems, and computer program products are provided for determining camera parameters and three dimensional locations of features from a plurality of images of a geographic area. These include, detecting features in the plurality of images where each of the images cover at least a portion of the geographic area, comparing the detected features between respective ones of the images to determine a plurality of matched features, selecting a subset of the plurality of matched features and determining the camera parameters and the three dimensional positions of one or more of the detected features using the selected subset. The respective matched features are selected depending on a quantity of other matched features in proximity to the respective matched features.
Abstract:
Systems, methods and computer storage apparatuses for synthesizing terrain elevations under overpasses are described herein. An embodiment includes identifying one or more spans across an overpass in an overpasses model, where the overpasses model includes information for one or more overpasses and respective locations and widths of the spans. The embodiment associates one or more terrain elevation values with the one or more identified spans, where the terrain elevation values can be included in an elevation model corresponding to the overpasses model. The embodiment further includes interpolating terrain elevation values for one or more points across the identified spans and updating the elevation model with the interpolated terrain elevation values.
Abstract:
Embodiments disclosed herein relate to synthesis of road elevation values. An embodiment includes traversing one or more road paths from a point in a road network model to identify intersections of the traversed road paths with terrain elevation values in an elevation model corresponding to the road network model, and interpolating an elevation value for the point using elevation values associated with the identified intersections, where the traversing and the interpolating are performed for each point on the road network model. In an embodiment, the interpolating can be performed when the point's elevation value is unavailable in the elevation model due to one or more non-terrain features overlapping the point and preventing measurement of the point's elevation value.
Abstract:
Systems and methods for merging three-dimensional models, such as a three-dimensional range sensor-based model and a three-dimensional camera-based model, are provided. According to aspects of the present disclosure, an enhanced volumetric merging technique can be used to merge the three-dimensional models. A plurality of voxels can be constructed for a three-dimensional space. A first distance field can be propagated based on the range sensor-based model in an extended margin between the range sensor-based model and a range sensor viewpoint. A second distance field can be propagated based on the camera-based model for voxels in the extended margin. A cumulative distance field can be determined based at least in part on the first field and the second distance field. The merged three-dimensional model can be constructed from the cumulative distance field using, for instance, a suitable meshing algorithm.