Training a natural language processing model with information retrieval model annotations
    1.
    发明授权
    Training a natural language processing model with information retrieval model annotations 有权
    培训具有信息检索模型注释的自然语言处理模型

    公开(公告)号:US09536522B1

    公开(公告)日:2017-01-03

    申请号:US14143011

    申请日:2013-12-30

    Applicant: Google Inc.

    Abstract: Systems and techniques are provided for training a natural language processing model with information retrieval model annotations. A natural language processing model may be trained, through machine learning, using training examples that include part-of-speech tagging and annotations added by an information retrieval model. The natural language processing model may generate part-of-speech, parse-tree, beginning, inside, and outside label, mention chunking, and named-entity recognition predictions with confidence scores for text in the training examples. The information retrieval model annotations and part-of-speech tagging in the training example may be used to determine the accuracy of the predictions, and the natural language processing model may be adjusted. After training, the natural language processing model may be used to make predictions for novel input, such as search queries and potential search results. The search queries and potential search results may have information retrieval model annotations.

    Abstract translation: 提供系统和技术,用于训练具有信息检索模型注释的自然语言处理模型。 可以通过机器学习,使用包括由信息检索模型添加的词性标注和注释的训练样本来训练自然语言处理模型。 自然语言处理模型可以生成词性,解析树,开始,内部和外部标签,提及分组和命名实体识别预测,在训练示例中具有文本的置信度分数。 可以使用训练示例中的信息检索模型注释和词性标签来确定预测的准确性,并且可以调整自然语言处理模型。 训练后,自然语言处理模型可用于对新颖的输入进行预测,如搜索查询和潜在搜索结果。 搜索查询和潜在搜索结果可能具有信息检索模型注释。

Patent Agency Ranking