Abstract:
Methods, systems, and apparatuses, including computer programs encoded on a computer storage medium, for adjusting language models. In one aspect, a method includes accessing audio data. Information that indicates a first context is accessed, the first context being associated with the audio data. At least one term is accessed. Information that indicates a second context is accessed, the second context being associated with the term. A similarity score is determined that indicates a degree of similarity between the second context and the first context. A language model is adjusted based on the accessed term and the determined similarity score to generate an adjusted language model. Speech recognition is performed on the audio data using the adjusted language model to select one or more candidate transcriptions for a portion of the audio data.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for enhancing speech recognition accuracy. In one aspect, a method includes receiving an audio signal that corresponds to an utterance recorded by a mobile device, determining a geographic location associated with the mobile device, identifying a set of geotagged audio signals that correspond to environmental audio associated with the geographic location, weighting each geotagged audio signal of the set of geotagged audio signals based on metadata associated with the respective geotagged audio signal, and using the set of weighted geotagged audio signals to perform noise compensation on the audio signal that corresponds to the utterance.
Abstract:
Methods, systems, and apparatuses, including computer programs encoded on a computer storage medium, for adjusting language models. In one aspect, a method includes accessing audio data. Information that indicates a first context is accessed, the first context being associated with the audio data. At least one term is accessed. Information that indicates a second context is accessed, the second context being associated with the term. A similarity score is determined that indicates a degree of similarity between the second context and the first context. A language model is adjusted based on the accessed term and the determined similarity score to generate an adjusted language model. Speech recognition is performed on the audio data using the adjusted language model to select one or more candidate transcriptions for a portion of the audio data.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for enhancing speech recognition accuracy. In one aspect, a method includes receiving an audio signal that corresponds to an utterance recorded by a mobile device, determining a geographic location associated with the mobile device, adapting one or more acoustic models for the geographic location, and performing speech recognition on the audio signal using the one or more acoustic models model that are adapted for the geographic location.
Abstract:
This disclosure generally relates to assigning and simultaneously running multiple client-side experiments on client devices. A file includes information regarding experiments that are available, including information regarding “layers,” which are logical, imaginary containers in which each experiment “resides.” Each experiment is associated with one layer. For each experiment, the file includes information regarding a location and size of the experiment within the layer. When the client device takes an action, a software module identifies a value of an identifier associated with the action. Each such identifier is associated with one or more of the layers. The software module can calculate, for each of the associated layers, a location within the layer based on the identifier value. The computer software module can identify, based on the information in the file, each experiment that overlaps with the calculated location within each layer and cause each identified experiment to be activated.
Abstract:
Methods, systems, and apparatuses, including computer programs encoded on a computer storage medium, for adjusting language models. In one aspect, a method includes accessing audio data. Information that indicates a first context is accessed, the first context being associated with the audio data. At least one term is accessed. Information that indicates a second context is accessed, the second context being associated with the term. A similarity score is determined that indicates a degree of similarity between the second context and the first context. A language model is adjusted based on the accessed term and the determined similarity score to generate an adjusted language model. Speech recognition is performed on the audio data using the adjusted language model to select one or more candidate transcriptions for a portion of the audio data.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing spoken query terms. In one aspect, a method includes performing speech recognition on an audio signal to select two or more textual, candidate transcriptions that match a spoken query term, and to establish a speech recognition confidence value for each candidate transcription, obtaining a search history for a user who spoke the spoken query term, where the search history references one or more past search queries that have been submitted by the user, generating one or more n-grams from each candidate transcription, where each n-gram is a subsequence of n phonemes, syllables, letters, characters, words or terms from a respective candidate transcription, and determining, for each n-gram, a frequency with which the n-gram occurs in the past search queries, and a weighting value that is based on the respective frequency.