Abstract:
Systems and methods for creating a data-driven attribution model are described. A processor identifies visits to a website. The processor identifies a path for each visitor identifier associated with the visits. The processor determines, for each path type associated with the identified paths, a path-type conversion probability based on a number of visits corresponding to the path type that resulted in a conversion. The processor calculates, for each of a plurality of the path types, a counterfactual gain for each event based on a conversion probability of the given path type and a conversion probability of a path type that does not include the event for which the counterfactual gain is calculated. The processor determines, for each event, an attribution credit based on the calculated counterfactual gain of the event. The processor then stores the attribution credits of each of the events.
Abstract:
Systems and methods for creating a data-driven attribution model are described. A processor identifies visits to a website. The processor identifies a path for each visitor identifier associated with the visits. The processor determines, for each path type associated with the identified paths, a path-type conversion probability based on a number of visits corresponding to the path type that resulted in a conversion. The processor calculates, for each of a plurality of the path types, a counterfactual gain for each event based on a conversion probability of the given path type and a conversion probability of a path type that does not include the event for which the counterfactual gain is calculated. The processor determines, for each event, an attribution credit based on the calculated counterfactual gain of the event. The processor then stores the attribution credits of each of the events.