Entity based temporal segmentation of video streams

    公开(公告)号:US09607224B2

    公开(公告)日:2017-03-28

    申请号:US14712071

    申请日:2015-05-14

    Applicant: Google Inc.

    CPC classification number: G06K9/00765 G06K9/6269 G06K9/66 H04N5/91

    Abstract: A solution is provided for temporally segmenting a video based on analysis of entities identified in the video frames of the video. The video is decoded into multiple video frames and multiple video frames are selected for annotation. The annotation process identifies entities present in a sample video frame and each identified entity has a timestamp and confidence score indicating the likelihood that the entity is accurately identified. For each identified entity, a time series comprising of timestamps and corresponding confidence scores is generated and smoothed to reduce annotation noise. One or more segments containing an entity over the length of the video are obtained by detecting boundaries of the segments in the time series of the entity. From the individual temporal segmentation for each identified entity in the video, an overall temporal segmentation for the video is generated, where the overall temporal segmentation reflects the semantics of the video.

    LARGE-SCALE CLASSIFICATION IN NEURAL NETWORKS USING HASHING
    4.
    发明申请
    LARGE-SCALE CLASSIFICATION IN NEURAL NETWORKS USING HASHING 有权
    神经网络中使用冲击的大规模分类

    公开(公告)号:US20160180200A1

    公开(公告)日:2016-06-23

    申请号:US14933256

    申请日:2015-11-05

    Applicant: Google Inc.

    CPC classification number: G06K9/6267 G06K9/66 G06N3/04 G06N3/082

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classification using a neural network. One of the methods for processing an input through each of multiple layers of a neural network to generate an output, wherein each of the multiple layers of the neural network includes a respective multiple nodes includes for a particular layer of the multiple layers: receiving, by a classification system, an activation vector as input for the particular layer, selecting one or more nodes in the particular layer using the activation vector and a hash table that maps numeric values to nodes in the particular layer, and processing the activation vector using the selected nodes to generate an output for the particular layer.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于使用神经网络进行分类。 用于处理通过神经网络的多个层中的每一层的输入以产生输出的方法之一,其中所述神经网络的所述多个层中的每一个包括针对所述多个层的特定层的相应多个节点包括:通过 分类系统,作为特定层的输入的激活向量,使用激活向量选择特定层中的一个或多个节点,以及将数值映射到特定层中的节点的哈希表,以及使用所选择的处理激活向量 节点来生成特定层的输出。

    LARGE-SCALE CLASSIFICATION IN NEURAL NETWORKS USING HASHING

    公开(公告)号:US20170323183A1

    公开(公告)日:2017-11-09

    申请号:US15656192

    申请日:2017-07-21

    Applicant: Google Inc.

    CPC classification number: G06K9/6267 G06K9/66 G06N3/04 G06N3/082

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classification using a neural network. One of the methods for processing an input through each of multiple layers of a neural network to generate an output, wherein each of the multiple layers of the neural network includes a respective multiple nodes includes for a particular layer of the multiple layers: receiving, by a classification system, an activation vector as input for the particular layer, selecting one or more nodes in the particular layer using the activation vector and a hash table that maps numeric values to nodes in the particular layer, and processing the activation vector using the selected nodes to generate an output for the particular layer.

    ENTITY BASED TEMPORAL SEGMENTATION OF VIDEO STREAMS
    7.
    发明申请
    ENTITY BASED TEMPORAL SEGMENTATION OF VIDEO STREAMS 有权
    基于实体的视频流的时间分段

    公开(公告)号:US20160335499A1

    公开(公告)日:2016-11-17

    申请号:US14712071

    申请日:2015-05-14

    Applicant: Google Inc.

    CPC classification number: G06K9/00765 G06K9/6269 G06K9/66 H04N5/91

    Abstract: A solution is provided for temporally segmenting a video based on analysis of entities identified in the video frames of the video. The video is decoded into multiple video frames and multiple video frames are selected for annotation. The annotation process identifies entities present in a sample video frame and each identified entity has a timestamp and confidence score indicating the likelihood that the entity is accurately identified. For each identified entity, a time series comprising of timestamps and corresponding confidence scores is generated and smoothed to reduce annotation noise. One or more segments containing an entity over the length of the video are obtained by detecting boundaries of the segments in the time series of the entity. From the individual temporal segmentation for each identified entity in the video, an overall temporal segmentation for the video is generated, where the overall temporal segmentation reflects the semantics of the video.

    Abstract translation: 提供了一种解决方案,用于基于在视频的视频帧中识别的实体的分析来对视频进行时间分割。 将视频解码为多个视频帧,并选择多个视频帧进行注释。 注释过程识别存在于样本视频帧中的实体,并且每个识别的实体具有指示实体准确识别的可能性的时间戳和置信度分数。 对于每个识别的实体,产生并平滑包括时间戳和对应的置信度分数的时间序列以减少注释噪声。 通过检测实体的时间序列中的段的边界来获得包含视频长度上的实体的一个或多个段。 根据视频中每个被识别实体的个体时间分割,生成视频的总体时间分割,其中整体时间分段反映视频的语义。

    Selecting and Presenting Representative Frames for Video Previews
    8.
    发明申请
    Selecting and Presenting Representative Frames for Video Previews 有权
    选择和呈现视频预览的代表帧

    公开(公告)号:US20160070962A1

    公开(公告)日:2016-03-10

    申请号:US14848216

    申请日:2015-09-08

    Applicant: Google Inc.

    Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.

    Abstract translation: 提供了一种用于选择视频的代表性帧的计算机实现的方法。 该方法包括接收视频并识别视频的每个帧的一组特征。 特征包括基于帧的特征和语义特征。 识别语义概念的可能性的语义特征作为视频帧中的内容呈现。 随后生成视频的一组视频段。 每个视频段包括来自视频的帧的按时间顺序的子集,并且每个帧与语义特征中的至少一个相关联。 该方法至少基于语义特征为每个视频段的帧子集的每帧生成分数,并且基于视频段中的帧的分数为每个视频段选择代表性的帧。 代表性的框架代表和总结视频段。

    DISCOVERY OF NEWS-RELATED CONTENT
    10.
    发明申请
    DISCOVERY OF NEWS-RELATED CONTENT 审中-公开
    新闻相关内容的发现

    公开(公告)号:US20160306804A1

    公开(公告)日:2016-10-20

    申请号:US15195105

    申请日:2016-06-28

    Applicant: Google Inc.

    Abstract: Methods, systems, and media for presenting comments based on correlation with content are provided. In some implementations, a method for presenting ranked comments is provided, the method comprising: receiving, using a hardware processor, content data related to an item of content; receiving, using the hardware processor, comment data related to a comment associated with the item of content; determining, using the hardware processor, a degree of correlation between at least a portion of the comment data and one or more portions of the content data; determining, using the hardware processor, a priority for the comment based on the degree of correlation; and presenting, using the hardware processor, the comment based on the priority.

    Abstract translation: 提供了基于与内容相关性来呈现评论的方法,系统和媒体。 在一些实现中,提供了一种用于呈现排名评论的方法,所述方法包括:使用硬件处理器接收与内容项相关的内容数据; 使用所述硬件处理器接收与所述内容项相关联的评论相关的评论数据; 使用所述硬件处理器确定所述评论数据的至少一部分与所述内容数据的一个或多个部分之间的相关程度; 基于所述相关程度来确定所述硬件处理器的所述评论的优先级; 以及基于所述优先级,使用所述硬件处理器来呈现所述注释。

Patent Agency Ranking