Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
Abstract:
Embodiments described herein facilitate or enhance the implementation of image recognition processes which can perform recognition on images to identify objects and/or faces by class or by people.
Abstract:
A neural network system that includes: multiple subnetworks that includes: a first subnetwork including multiple first modules, each first module including: a pass-through convolutional layer configured to process the subnetwork input for the first subnetwork to generate a pass-through output; an average pooling stack of neural network layers that collectively processes the subnetwork input for the first subnetwork to generate an average pooling output; a first stack of convolutional neural network layers configured to collectively process the subnetwork input for the first subnetwork to generate a first stack output; a second stack of convolutional neural network layers that are configured to collectively process the subnetwork input for the first subnetwork to generate a second stack output; and a concatenation layer configured to concatenate the pass-through output, the average pooling output, the first stack output, and the second stack output to generate a first module output for the first module.
Abstract:
A similarity search may be performed on the image of a person, using visual characteristics and information that is known about the person. The search identifies images of other persons that are similar in appearance to the person in the image.
Abstract:
An embodiment provides for enabling retrieval of a collection of captured images that form at least a portion of a library of images. For each image in the collection, a captured image may be analyzed to recognize information from image data contained in the captured image, and an index may be generated, where the index data is based on the recognized information. Using the index, functionality such as search and retrieval is enabled. Various recognition techniques, including those that use the face, clothing, apparel, and combinations of characteristics may be utilized. Recognition may be performed on, among other things, persons and text carried on objects.
Abstract:
An image-based content item is analyzed to determine one or more interests of a viewer of the content item. The analysis may include performing image analysis on the content item to determine geographic information that is relevant to an image of the content item. The one or more interests may be determined based on an assumption or probabilistic conclusion about a subject of the content item. Further, the one or more interests may be determined by applying one or more rules that utilize the geographic information. For some embodiments, a supplemental content item may be provided to the viewer based on the one or more interests.
Abstract:
A speech recognition process may perform the following operations: performing a preliminary recognition process on first audio to identify candidates for the first audio; generating first templates corresponding to the first audio, where each first template includes a number of elements; selecting second templates corresponding to the candidates, where the second templates represent second audio, and where each second template includes elements that correspond to the elements in the first templates; comparing the first templates to the second templates, where comparing comprises includes similarity metrics between the first templates and corresponding second templates; applying weights to the similarity metrics to produce weighted similarity metrics, where the weights are associated with corresponding second templates; and using the weighted similarity metrics to determine whether the first audio corresponds to the second audio.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
Abstract:
The present disclosure relates to optimized matrix multiplication using vector multiplication of interleaved matrix values. Two matrices to be multiplied are organized into specially ordered vectors, which are multiplied together to produce a portion of a product matrix.