Abstract:
A lithium ion electrochemical cell having an electrolyte with reduced carbonate content is described. The reduced carbonate electrolyte minimizes electrolyte out-gassing when the cell is exposed to temperatures above 100° C. The preferred electrolyte comprises a primary solvent of γ-butyrolactone and a secondary solvent comprising an aliphatic or halogen constituent. A most preferred electrolyte consists essentially of γ-butyrolactone as a primary solvent, fluorotoluene as a secondary solvent, and an electrolyte additive formulation of vinylene carbonate, fluorinated ethylene carbonate, and polyvinyl pyridine-co-styrene. An alkali metal salt is added to the solvent admixture.
Abstract:
An electrolyte comprising an organic solvent, a lithium salt, and a polymer additive comprised of repeating vinyl units joined to one or more heterocyclic amine moieties is described. The heterocyclic amine contains five to ten ring atoms, inclusive. An electrochemical cell is also disclosed. The preferred cell comprises a negative electrode which intercalates with lithium, a positive electrode comprising an electrode active material which intercalates with lithium, and the electrolyte of the present invention activating the negative and the positive electrodes.
Abstract:
An electrolyte comprising an organic solvent, a lithium salt, and a polymer additive comprised of repeating vinyl units joined to one or more heterocyclic amine moieties is described. The heterocyclic amine contains five to ten ring atoms, inclusive. An electrochemical cell is also disclosed. The preferred cell comprises a negative electrode which intercalates with lithium, a positive electrode comprising an electrode active material which intercalates with lithium, and the electrolyte of the present invention activating the negative and the positive electrodes.
Abstract:
A lithium ion electrochemical cell having an electrolyte with reduced carbonate content is described. The reduced carbonate electrolyte minimizes electrolyte out-gassing when the cell is exposed to temperatures above 100° C. The preferred electrolyte comprises a primary solvent of γ-butyrolactone and a secondary solvent comprising an aliphatic or halogen constituent. A most preferred electrolyte consists essentially of γ-butyrolactone as a primary solvent, fluorotoluene as a secondary solvent, and an electrolyte additive formulation of vinylene carbonate, fluorinated ethylene carbonate, and polyvinyl pyridine-co-styrene. An alkali metal salt is added to the solvent admixture.