-
公开(公告)号:US09978113B2
公开(公告)日:2018-05-22
申请号:US15181018
申请日:2016-06-13
Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
Inventor: Malgorzata M. Sturgill , Steven J. Simske , Jason S. Aronoff , Marie Vans , Paul S. Everest
CPC classification number: G06T1/0028 , G06T2201/0051 , G06T2201/0201
Abstract: A counterfeit identification performance attribute (SIPA) sensitivity to changes in resolution of the image for features of an image is determined. The CIPA sensitivity for the features is used to choose at least one feature to determine whether the image on a sample is a counterfeit.
-
2.
公开(公告)号:US20160292809A1
公开(公告)日:2016-10-06
申请号:US15181018
申请日:2016-06-13
Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
Inventor: Malgorzata M. Sturgill , Steven J. Simske , Jason S. Aronoff , Marie Vans , Paul S. Everest
CPC classification number: G06T1/0028 , G06T2201/0051 , G06T2201/0201
Abstract: A counterfeit identification performance attribute (SIPA) sensitivity to changes in resolution of the image for features of an image is determined. The CIPA sensitivity for the features is used to choose at least one feature to determine whether the image on a sample is a counterfeit.
Abstract translation: 确定对图像的特征的图像的分辨率的变化的伪造识别性能属性(SIPA)灵敏度。 功能的CIPA灵敏度用于选择至少一个功能来确定样品上的图像是否为假冒。
-
公开(公告)号:US20140241618A1
公开(公告)日:2014-08-28
申请号:US13780330
申请日:2013-02-28
Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
Inventor: Steven J. Simske , Malgorzata M. Sturgill , Matthew D. Gaubatz , Paul S. Everest , Masoud Zaverehi
IPC: G06K9/62
CPC classification number: G06K9/6292 , G06K9/6262
Abstract: Examples disclosed herein relate to combining region based image classifiers. In one implementation, a processor measures correct classification and misclassification levels associated with a first image classifier related to a first image feature region and measures correct classification and misclassification levels associated with a second image classifier related to a second image feature region. The processor may create a combined classifier based on the first image classifier correct classification and misclassification levels and based on the second image classifier correct classification and misclassification levels such that the combined classifier is related to the first image feature region and the second image feature region.
Abstract translation: 本文公开的示例涉及组合基于区域的图像分类器。 在一个实现中,处理器测量与与第一图像特征区域相关的第一图像分类器相关联的正确分类和错误分类级别,并且测量与与第二图像特征区域相关的第二图像分类器相关联的正确分类和错误分类级别。 处理器可以基于第一图像分类器正确分类和错误分类级别并且基于第二图像分类器正确分类和错误分类级别来创建组合分类器,使得组合分类器与第一图像特征区域和第二图像特征区域相关。
-
-