Abstract:
A device for mixing fluids for a downflow catalytic reactor (1), having at least one substantially horizontal collector (5) provided with a substantially vertical collection conduit (7) receiving fluids collected by said collector (5); an injector (8) injecting a quench fluid opening into said collection conduit (7); a mixing chamber (9) located downstream of the collector (5) in the direction of movement of the fluids, having an inlet end connected directly to the collection conduit (7) and an outlet end (10) evacuating the fluids; and a pre-distribution plate (11) having a plurality of perforations and at least one riser (13), being located downstream of said mixing chamber (9) in the direction of movement of the fluids; the section of the mixing chamber (9) is a parallelogram and has at least one deflector (15) over at least one of the four internal walls of the mixing chamber (9) with a parallelogram section.
Abstract:
The invention is a distributor tray having at least one perforated wall defining compartments. The distributor tray has at least one distribution compartment through which gas and the liquid flows through the tray, and at least one retention compartment through which the liquid cannot flow through the tray. The at least one retention compartment is on the periphery of the tray. The invention also relates to a column for heat and/or material exchange between a gas and a liquid equipped with a distributor tray, to a floating barge including the column and to the use of the column.
Abstract:
A contactor includes a random packing arrangement in several compartments. The compartments can be delimited by perforated plates or by structured packing walls.A heat and/or material exchange column is equipped with such a contactor. A floating structure includes such a column. A column equipped with such a contactor can be used for a gas treatment, CO2 capture, distillation or air conversion process.
Abstract:
The present invention describes a distributor plate provided with distribution elements having low sensitivity to a lack of horizontality, a distribution element being constituted by two substantially co-axial cylinders termed the inner cylinder (1) and the outer cylinder, the lower horizontal surface (5) separating the two cylinders being closed. The distributor plate is suitable for co-current downflows of gas and liquid, more particularly in “trickle bed” mode. The invention also concerns the application of the distributor plate to processes for the hydrotreatment or hydrogenation of various oil cuts.
Abstract:
The present invention relates to a distributor tray (2) for a column intended for heat and/or material exchange between a gas and a liquid. The tray comprises gas passage means (4), liquid passage means (6) and distribution means (5) for distributing the liquid with a preferred orientation.The invention also relates to a heat and/or material exchange column, and to the use of the column.
Abstract:
The invention is a distributor tray for at least one a gas/liquid heat and a material exchange column comprising passages for passing gas through the tray. The tray has an upper plate (P1) and a lower plate (P2) with each plate having at least two distinct liquid passages. The openings (10 and 11) of the upper plate (P1) are positioned at distinct elevations with at least one of the liquid passages (10) of upper plate (P1) having a lower elevation communicating with one of the liquid passages of the lower plate through a supply line (9). The invention also relates to a gas/liquid heat and/or material exchange column equipped with a distributor tray (2) in accordance with the invention and to a floating barge having a column and to the use of the column.
Abstract:
The catalytic reactor with downward flow comprises a chamber (1) containing at least two solid catalyst beds (2; 11) separated by an intermediate zone comprising an essentially horizontal collecting plate (5) communicating with a vertical collecting pipe (7) for receiving fluids collected by the collecting plate, with a means for injecting a quenching fluid (8) emptying into the collecting pipe. An annular mixing chamber (9) is located below the collecting plate (5). A predistribution plate (11) is arranged below the chamber (9).The injection means (8) comprises a tubular portion that empties into the collecting pipe (7) in such a way as to inject quenching fluid in a direction forming an angle θ between 45° and 135° with the direction D from the axis of the mixing chamber measured at its input end.
Abstract:
A plate that allows the distribution of a polyphase mixture in a reactor that operates in the trickle mode and that consists of at least one gaseous phase and at least one liquid phase, with the plate (10) being located above a catalytic particle bed, comprising a number of shafts (3), and a portion of the shafts of the plate, located close to the wall of the reactor chamber, called peripheral shafts, are truncated. The plate is used in a reactor for the purpose of carrying out hydrotreatment, hydrogenation, or oxidation.
Abstract:
A heat storage and recovery system and process includes at least one cylindrical external wall, at least one first volume, at least one second volume and at least two fluid injection/withdrawal devices. The first and second volumes are separated by at least one heat storage system comprising at least one bed of heat storage particles. Furthermore, the storage system and the first and second volumes extend substantially over the entire axial length of the cylindrical external wall. The longitudinal axis of the said cylindrical external wall is horizontal. A system and a process for the storage and recovery of energy by compressed gas include such a heat storage means.
Abstract:
A contactor for a heat and/or material exchange column includes an arrangement of two structured packings developing different geometric surface areas and having parallel principal directions.A heat exchange column, a floating structure including such a contactor, and the use of a column equipped with such a contactor are also disclosed.