Abstract:
Systems and methods disclosed herein describe a centralized-processing cloud-based RAN (C-RAN or cloud-RAN) architecture that offers reduced front-haul data-rate requirements compared to common-public-radio-interface (CPRI) based C-RAN architectures. Base-band physical-layer processing can be divided between a BBU Pool and an enhanced RRH (eRRH). A frequency-domain compression approach that exploits LTE signal redundancy and user scheduling information can be used at the eRRH to significantly reduce front-haul data-rate requirements. Uniform scalar quantization and variable-rate Huffman coding in the frequency-domain can be applied in a compression approach based on the user scheduling information wherein a lossy compression is followed by a lossless compression.
Abstract:
Technology to achieve uplink synchronization with a mmWave enhanced Node B (eNB) is disclosed. In an example, a user equipment (UE) can include circuitry configured to: receive selected random access (RA) parameters from an anchor eNB for uplink synchronization; identify a transmission direction for communication with the mmWave eNB based on a downlink synchronization of the UE with the mmWave eNB; and communicate a random access channel (RACH) transmission in the identified transmission direction for uplink synchronization of time, frequency, and beam direction with the mmWave eNB.
Abstract:
Technology for a base station operable to encode guard interval (GI) discrete Fourier transform (DFT) spread orthogonal frequency-division multiplexing (OFDM) (GI-DFT-s-OFDM) data symbols for transmission to a user equipment (UE) is disclosed. The base station can identify GI-DFT-s-O 5 FDM data symbols for transmission to the UE. The base station can encode the GI-DFT-s-OFDM data symbols for transmission to the UE in a subframe. The subframe can be in accordance with a flexible subframe structure that begins with a demodulation reference signal (DMRS) sequence followed by a GI sequence in a first symbol of the subframe. The subframe can further comprise one or 10 more subsequent symbols in the subframe that each include a GI-DFT-s-OFDM data symbol followed by a GI sequence.
Abstract:
Technology described herein relates to systems, methods, and computer readable media to enable a millimeter wave capable small cell (MCSC) devices to receive a handover of a user equipment from a universal mobile telecommunications system terrestrial radio access node B (eNB). In particular, systems and methods are described for user equipment (UE) association with a MCSC operating as a booster for an eNB in a time division duplexing (TDD) system, including identification of and communication on preferred cell sector between the UE and the MCSC. Protocols for concurrently performing a beam search and time and frequency synchronization for downlink communication are also described. Several sub-frame designs to facilitate these protocols are also described.