Abstract:
Technologies for natural language request processing include a computing device having a semantic compiler to generate a semantic model based on a corpus of sample requests. The semantic compiler may generate the semantic model by extracting contextual semantic features or processing ontologies. The computing device generates a semantic representation of a natural language request by generating a lattice of candidate alternative representations, assigning a composite weight to each candidate, and finding the best route through the lattice. The composite weight may include semantic weights, phonetic weights, and/or linguistic weights. The semantic representation identifies a user intent and slots associated with the natural language request. The computing device may perform one or more dialog interactions based on the semantic request, including generating a request for additional information or suggesting additional user intents. The computing device may support automated analysis and tuning to improve request processing. Other embodiments are described and claimed.
Abstract:
Technologies for natural language request processing include a computing device having a semantic compiler to generate a semantic model based on a corpus of sample requests. The semantic compiler may generate the semantic model by extracting contextual semantic features or processing ontologies. The computing device generates a semantic representation of a natural language request by generating a lattice of candidate alternative representations, assigning a composite weight to each candidate, and finding the best route through the lattice. The composite weight may include semantic weights, phonetic weights, and/or linguistic weights. The semantic representation identifies a user intent and slots associated with the natural language request. The computing device may perform one or more dialog interactions based on the semantic request, including generating a request for additional information or suggesting additional user intents. The computing device may support automated analysis and tuning to improve request processing. Other embodiments are described and claimed.
Abstract:
Technologies for natural language request processing include a computing device having a semantic compiler to generate a semantic model based on a corpus of sample requests. The semantic compiler may generate the semantic model by extracting contextual semantic features or processing ontologies. The computing device generates a semantic representation of a natural language request by generating a lattice of candidate alternative representations, assigning a composite weight to each candidate, and finding the best route through the lattice. The composite weight may include semantic weights, phonetic weights, and/or linguistic weights. The semantic representation identifies a user intent and slots associated with the natural language request. The computing device may perform one or more dialog interactions based on the semantic request, including generating a request for additional information or suggesting additional user intents. The computing device may support automated analysis and tuning to improve request processing. Other embodiments are described and claimed.
Abstract:
Technologies for natural language request processing include a computing device having a semantic compiler to generate a semantic model based on a corpus of sample requests. The semantic compiler may generate the semantic model by extracting contextual semantic features or processing ontologies. The computing device generates a semantic representation of a natural language request by generating a lattice of candidate alternative representations, assigning a composite weight to each candidate, and finding the best route through the lattice. The composite weight may include semantic weights, phonetic weights, and/or linguistic weights. The semantic representation identifies a user intent and slots associated with the natural language request. The computing device may perform one or more dialog interactions based on the semantic request, including generating a request for additional information or suggesting additional user intents. The computing device may support automated analysis and tuning to improve request processing. Other embodiments are described and claimed.
Abstract:
The present disclosure describes dynamically adjusting linguistic models for automatic speech recognition based on biometric information to produce a more reliable speech recognition experience. Embodiments include receiving a speech signal, receiving a biometric signal from a biometric sensor implemented at least partially in hardware, determining a linguistic model based on the biometric signal, and processing the speech signal for speech recognition using the linguistic model based on the biometric signal.
Abstract:
Technologies for natural language request processing include a computing device having a semantic compiler to generate a semantic model based on a corpus of sample requests. The semantic compiler may generate the semantic model by extracting contextual semantic features or processing ontologies. The computing device generates a semantic representation of a natural language request by generating a lattice of candidate alternative representations, assigning a composite weight to each candidate, and finding the best route through the lattice. The composite weight may include semantic weights, phonetic weights, and/or linguistic weights. The semantic representation identifies a user intent and slots associated with the natural language request. The computing device may perform one or more dialog interactions based on the semantic request, including generating a request for additional information or suggesting additional user intents. The computing device may support automated analysis and tuning to improve request processing. Other embodiments are described and claimed.