Abstract:
A method (700) includes receiving (701) a receive signal (x[n]) comprising a periodic data signal component (r[n]) and a periodic interference signal component (s[n]); determining (702) an average value by averaging over sub-samples of the receive signal (x[n]), wherein the average value is independent of at least one sub-sample of the receive signal (x[n]) having a same phase as a particular sample ([n]) of the receive signal (x[n]); and determining (703) for the particular sample ([n]) of the receive signal (x[n]) an estimate (ŝ[n]) of the interference signal component (s[n]) based on the average value.
Abstract:
A method (700) includes receiving (701) a receive signal (x[n]) comprising a periodic data signal component (r[n]) and a periodic interference signal component (s[n]); determining (702) an average value by averaging over sub-samples of the receive signal (x[n]), wherein the average value is independent of at least one sub-sample of the receive signal (x[n]) having a same phase as a particular sample ([n]) of the receive signal (x[n]); and determining (703) for the particular sample ([n]) of the receive signal (x[n]) an estimate (ŝ[n]) of the interference signal component (s[n]) based on the average value.