MIMO BOLT-ON DEVICE, MIMO CHANNEL EMULATOR, AND MIMO CHANNEL EMULATION METHOD

    公开(公告)号:US20200373972A1

    公开(公告)日:2020-11-26

    申请号:US16991583

    申请日:2020-08-12

    Abstract: A multiple-input and multiple-output (MIMO) bolt-on device for a single-input and single-output (SISO) radio, a MIMO channel emulator for testing the MIMO bolt-on device, and a MIMO channel emulation method are provided. The MIMO bolt-on device includes: a plurality of antennas, a multi-channel receiver, a plurality of couplers, a micro-controller, and a switch device. The multi-channel receiver includes a plurality of channels for signal transmission. Each coupler is configured to couple the multi-channel receiver with one of the plurality of antennas. The micro-controller is coupled to the multi-channel receiver to compare signals from the plurality of channels, thereby identifying a channel with a highest signal-to-noise (SNR) among the plurality of channels. The switch device is coupled to the micro-controller and configured to select an antenna corresponding to the channel with the highest SNR among the plurality of antennas for a connection between a selected antenna and the SISO radio.

    METHODS AND SYSTEMS FOR TESTING SATELLITE SIGNAL RECEIVER ANTENNA

    公开(公告)号:US20190219706A1

    公开(公告)日:2019-07-18

    申请号:US15874526

    申请日:2018-01-18

    Abstract: A method for testing satellite signal receiver antenna is provided. The method includes: determining a satellite constellation state indicating status of a plurality of satellites in a satellite constellation; calculating, based on the determined satellite constellation state, initial positions of a plurality of satellite antennas that are used for emulating the satellite constellation; moving the plurality of satellite antennas to the initial positions of the plurality of satellite antennas; calibrating a phase delay of each of the plurality of satellite antennas; broadcasting, by the plurality of satellite antennas, satellite signals to test a satellite signal receiver antenna; determining a movement plan for the plurality of satellite antennas based on the satellite constellation state; and moving the plurality of satellite antennas based on the movement plan to emulate a propagation of the satellite constellation.

    APPARATUS AND METHOD FOR TARGET DETECTION AND LOCALIZATION

    公开(公告)号:US20210377452A1

    公开(公告)日:2021-12-02

    申请号:US16890675

    申请日:2020-06-02

    Abstract: An apparatus includes a camera for capturing an image at a first moment; a range finder for measuring a distance to an object at a center of the image; a rotatable mounting platform, fixedly hosting the camera and the range finder; and a controller. The controller is configured to receive the captured image and the measured distance; determine whether a target of interest (TOI) appears in the image; in response to determining a TOI appearing in the image, determine whether the TOI appears at the center of the image; calculate position parameters of the rotatable mounting platform for centering the TOI in an image to be captured at a second moment, separated from the first moment by a pre-determined time interval; control the rotatable mounting platform to rotate according to the calculated position parameters; and calculate and store the position parameters of the TOI with respect to the apparatus.

    HIDDEN CHAMBER DETECTOR
    4.
    发明公开

    公开(公告)号:US20230179265A1

    公开(公告)日:2023-06-08

    申请号:US16813250

    申请日:2020-03-09

    CPC classification number: G01S13/9017 G01S7/354 G01S13/888

    Abstract: A hidden chamber detector includes a linear frequency modulated continuous wave (LFMCW) radar, a synthetic aperture radar (SAR) imaging processor, and a time division multiple access (TDMA) multiple input multiple output (MIMO) antenna array, including a plurality of transmitting and receiving (Tx-Rx) antenna pairs. A Tx-Rx antenna pair is selected, in a time division manner, as a Tx antenna and an Rx antenna for the LFMCW radar. The LFMCW radar is configured to transmit an illumination signal, receive an echo signal, convert the echo signal to a baseband signal, collect baseband samples, and send the collected samples to the SAR imaging processor. The SAR imaging processor is configured to receive the collected samples, collect structure/configuration of the antenna array and scanning information, and form an SAR image based on the collected samples, the structure/configuration of the antenna array, and the scanning information.

Patent Agency Ranking