摘要:
A method and apparatus for determining the three-dimensional movement of a patient positioned on a table between an X-ray source and an image receiver of an X-ray imaging apparatus is presented. The apparatus has an X-ray source positioned opposite an image receiver, the X-ray source and the image receiver being driven in rotation about an axis. The method and apparatus has the following operation: radio-opaque markers are placed on the patient's body; at least one first radiographic image of the patient is taken for a first determined fixed position of the imaging apparatus; at least one second radiographic image of the patient is taken for a second determined fixed position; and a matrix of the three-dimensional movement of the patient is determined on the basis of the two-dimensional movements of the markers in the radiographic images, the X-ray source constituting a fixed reference frame.
摘要:
A method for determining acquisition geometry of an imaging system from a set of calibration matrices for an arbitrary position of the system, a projection matrix makes a point in a 2D image correspond to a point of an object in a space. This matrix is produced for any unspecified position of the system from knowledge of a limited number of pre-computed calibration matrices. For instance, a projection matrix may be computed by interpolating coefficients of calibration matrices and/or applying a transformation with a rigid model defined comprehensively or locally to a particular calibration matrix.
摘要:
In the field of medical imaging minimizing the number of acquisitions required to calibrate a radiological device. Calibration of the radiological imaging device is provided by moving the device with respect to a calibration object and performing a series of acquisitions, each acquisition being associated to a calibration position of the device. Based on the acquisitions performed, determining the projection parameters associated to each calibration position of the device. For an additional position that has not been taken by the device during the acquisition, determining the projection parameter values associated to this additional position according to the parameters associated to the calibration positions.
摘要:
A method and apparatus for imaging including reconstruction of an image of an object from a set of projections acquired for different positions of an acquisition apparatus around the object to be imaged and in which a projection source is situated at a finite distance relative to the acquisition apparatus. The method includes undertaking a set of rectifications of projections acquired for different positions of the acquisition apparatus, rectifications comprising transforming the data of the projection acquired projection into projection data on a virtual rectification support placed in a preset orientation in concordance with a set of reconstruction calculation points distributed over the image to be reconstructed.
摘要:
In the field of medical imaging using fluoroscopy, a method for reducing noise in a sequence of fluoroscopic images acquired by an X-ray detector comprises for each image (xn) of the sequence: applying temporal filtering to the image (xn) at instant n, the temporal filtering comprising fluoroscopic noise reduction processing; applying spatial filtering to the image (yn) at instant n, the spatial filtering comprising: transforming the image (yn) acquired at the instant n from the spatial domain into the curvelet domain using a curvelet transform, each transformed image being represented by a set of coefficients, thresholding the coefficients of the image (yn) using a thresholding function, the thresholding function cancelling the coefficients below a third predetermined threshold, and preserving or adjusting the coefficients above the third predetermined threshold, transforming the image (Zn) whose coefficients have been thresholded from the curvelet domain into the spatial domain using an inverse curvelet transform.
摘要:
In the field of medical imaging using fluoroscopy, a method for reducing noise in a sequence of fluoroscopic images acquired by an X-ray detector comprises for each image (xn) of the sequence: applying temporal filtering to the image (xn) at instant n, the temporal filtering comprising fluoroscopic noise reduction processing; applying spatial filtering to the image (yn) at instant n, the spatial filtering comprising: transforming the image (yn) acquired at the instant n from the spatial domain into the curvelet domain using a curvelet transform, each transformed image being represented by a set of coefficients, thresholding the coefficients of the image (yn) using a thresholding function, the thresholding function cancelling the coefficients below a third predetermined threshold, and preserving or adjusting the coefficients above the third predetermined threshold, transforming the image (zn) whose coefficients have been thresholded from the curvelet domain into the spatial domain using an inverse curvelet transform.