Abstract:
A display device includes a display region comprising a plurality of pixels, each pixel of the plurality of pixels comprises a light emitting element which includes a pixel electrode, a conductive layer below the pixel electrode and configured to receive a specified electric voltage, and a thin film transistor below the pixel electrode and the conductive layer, wherein the thin film transistor comprises a semiconductor layer which includes a channel region, a gate electrode which is overlapping the channel region, a first electrode electrically connected to the semiconductor layer and the pixel electrode, and a second electrode electrically connectable to a power supply line, wherein the conductive layer includes an overlapped region which overlaps with the channel region, and the first electrode extends so as to cover the gate electrode at the overlapped region.
Abstract:
A flash phenomenon of OLEDs at the time of power source ON of a display device is suppressed. The OLED emits light when reference potentials VSS and VDD are applied from power source lines to the OLED's cathode and anode respectively. While the anode can be connected to one of the power source line via a driving TFT and a lighting switch, a reset potential VRS can be applied to the anode via a reset switch and the driving TFT. The lighting switch is turned OFF and the reset switch and the driving TFT are turned ON so that VRS is applied to the anode, before starting the application of the reference potentials to the power source lines. Following this state, the application of the reference potentials to the power source lines starts, and thus a normal operation of allowing the OLED to emit light starts.
Abstract:
According to one embodiment, a display device includes a plurality of pixel units which each includes a light-emitting element and a pixel circuit, a plurality of first scan lines and second scan lines, a plurality of video signal lines, a controller which controls a scan line drive circuit and a signal line drive circuit, wherein the pixel circuit comprises an output switch, a drive transistor, a capacitance, and a pixel switch, wherein the controller controls a reset operation, a cancellation operation, a correction operation, and a light-emitting operation, and the controller deforms a waveform of a control signal which is supplied from the second scan line in a manner that a time of transitioning the pixel switch from an on-state to an off-state is longer than the time of transitioning by a non-deformed control signal, when writing the video voltage signal in the correction operation.