摘要:
A stand alone Redundancy Management System (RMS) provides a cost-effective solution for managing redundant computer-based systems in order to achieve ultra-high system reliability, safety, fault tolerance, and mission success rate. The RMS includes a Cross Channel Data Link (CCDL) module and a Fault Tolerant Executive (FE) module. The CCDL module provides data communication for all channels, while the FTE module performs system functions such as synchronization, data voting, fault and error detection, isolation and recovery. System fault tolerance is achieved by detecting and masking erroneous data through data voting, and system integrity is ensured by a dynamically reconfigurable architecture that is capable of excluding faulty nodes from the system and re-admitting healthy nodes back into the system.
摘要:
An integrated circuit chip for interfacing a digital computer to sensors and controlled devices can be configured to accept and provide a variety of analog and discrete input and output signals. The circuit includes a plurality of signal conditioning cells, a plurality of signal conversion cells, and input and output signal multiplexors.
摘要:
A smart multi-modal telehealth IoT system for respiratory analysis. Such a system includes a body area sensor network comprised of meshed wireless sensor nodes and advanced machine learning techniques. The system may be used to remotely diagnose a user's respiratory illness and monitor their health.
摘要:
A system of networked sensors designed to predict the onset of chronic obstructive pulmonary disease (COPD) symptoms is disclosed. The system is worn by an individual and the sensors collect data correlated with COPD symptoms. The collected sensor data is transmitted from the device to the user's mobile device for analysis. The results of the analysis may be forwarded to a health care provider.
摘要:
The least movement WSAN topology repair method features an algorithm utilized in wireless sensor actor networks (WSAN) to maintain and restore connectivity following network node failure. The method is distributed throughout the WSAN nodes and relies on nodes' local view about the network. The method uses Path discovery activities in the network to determine the structure of the network topology. Upon failure of a node, the method replaces the faulty node by selecting a neighbor node belonging to the smallest disjointed block. The method is applied further recursively in case the node replacing the faulty node gets disconnected from its children, i.e., neighbors within the block, while imposing no constraints to sustain the path length between any pair of nodes at pre-failure. In this manner, the method minimizes the number of nodes relocated while also reducing message travel distance and complexity.