Abstract:
A driver arrangement (10) comprises a digital controller (11) that is configured to receive a digital input signal (SDI) and a driver (12) that comprises a driver input (14) and a driver output (15) and is configured to provide an analog output signal (SANO) at the driver output (15). The driver arrangement (10) comprises a coupling circuit (13) that comprises a digital-to-analog converter (19) and a feedback circuit (24). The digital-to-analog converter (19) comprises a converter input (20) coupled to the digital controller (11) and a converter output (21) coupled to the driver input (14). The feedback circuit (24) is coupled to the driver output (15) and to a feedback input (17) of the digital controller (11).
Abstract:
A converting circuit and a communication device are provided. The converting circuit includes: a sample hold circuit for receiving an analog signal; a Digital to Analog Converter (DAC); a comparator being connected with an output end of the sample hold circuit and an output end of the DAC; and a control circuit being connected with an output end of the comparator, wherein when the sample hold circuit receives an analog signal, the control circuit controls the sample hold circuit and the comparator to work, controls an output of the DAC based on an output of the comparator, and outputs a corresponding digital signal; and when the control circuit detects a digital signal is input, the control circuit controls the DAC to convert the digital signal into an corresponding analog signal and output the corresponding analog signal. The converting circuit can reduce chip area and chip cost.
Abstract:
A fieldbus adaptor connected between a fieldbus that handles a digital signal and a field device that handles an analog signal, the fieldbus adaptor comprising a first connection unit detachably connected to the fieldbus, a second connection unit detachably connected to the field device, and a conversion unit provided between the first connection unit and the second connection unit, the conversion unit bidirectionally converting the digital signal handled by the fieldbus and the analog signal handled by the field device.
Abstract:
A combined AD/DA converting apparatus carrying out AD conversion of an analog input signal to output a converted digital signal or carrying out DA conversion of a digital input signal to output a converted analog signal based on a conversion selection signal for selecting AD conversion or DA conversion comprises an input signal selection circuit configured to select one analog signal out of a plurality of analog input signals to be output based on an input selection signal; an input sample hold circuit configured to sample and hold the analog input signal output from the input signal selection circuit; a DA converter configured to convert a digital signal into an analog signal to be output; a comparator circuit configured to output a comparison signal that indicates a size relation between the analog input signal output from the input sample hold circuit and the analog signal output from the DA converter; a sequential comparison register configured to define sequentially each place of a digital signal stored in the register based on the comparison signal output from the comparison circuit; a selection circuit configured to receive the digital signal stored in the sequential comparison register, the digital input signal, and the conversion selection signal, the selection circuit being configured to output the digital signal stored in the sequential comparison register to the DA converter when the conversion selection signal indicates AD conversion, and to output the digital input signal to the DA converter when the conversion selection signal indicates DA conversion; and a controlling unit configured to output the input selection signal when the conversion selection signal indicates DA conversion.
Abstract:
An integrated circuit includes an analog signal output unit which converts a digital output signal into at least one analog output signal, and outputs the at least one analog output signal, an analog signal input unit which converts at least one analog input signal received from an exterior into a digital input signal, a switch circuit which provides at least one signal path through which the at least one analog output signal is supplied from the analog signal output unit to the analog signal input unit as the at least one analog input signal, and an offset adjustment control circuit which supplies an output offset from the analog signal output unit to the analog signal input unit via the at least one signal path so as to detect the digital input signal inclusive of the output offset and an input offset, and cancels offsets of the analog signal output unit and the analog signal input unit in response to the output offset and the input offset obtained from the detected digital input signal.
Abstract:
An integrated circuit includes an analog signal output unit which converts a digital output signal into at least one analog output signal, and outputs the at least one analog output signal, an analog signal input unit which converts at least one analog input signal received from an exterior into a digital input signal, a switch circuit which provides at least one signal path through which the at least one analog output signal is supplied from the analog signal output unit to the analog signal input unit as the at least one analog input signal, and an offset adjustment control circuit which supplies an output offset from the analog signal output unit to the analog signal input unit via the at least one signal path so as to detect the digital input signal inclusive of the output offset and an input offset, and cancels offsets of the analog signal output unit and the analog signal input unit in response to the output offset and the input offset obtained from the detected digital input signal.
Abstract:
A circuit operable in two modes alternatively to provide a digital-to-analog converter capability and an analog-to-digital converter capability is disclosed utilizing a single digital multiplexer at a digital input and two analog multiplexers to control signal path routing. A track-and-hold circuit is utilized in the analog-to-digital configuration as a sample-and-hold, and alternatively in the digital-to-analog configuration as an operational amplifier.
Abstract:
In a PCM CODEC, a binary-weighted charge redistribution capacitor array is designed to be configured for either .mu.-law or A-law coding. Selection of one or the other coding configuration is achieved by controlling a single gate circuit. A unique cascaded switch arrangement ensures that when selected capacitors representative of a specified coding segment are connected to a reference voltage source, the next successive capacitor of the array is automatically connected to a variable source that provides a voltage representative of a step within the specified segment.
Abstract:
A switching arrangement for converting analog signals into digital signals, and vice versa, is described. Conversions between pulse amplitude modulated (PAM) and pulse code modulated (PCM) signals are performed. In telecommunication systems having subscriber stations equipped to transmit and receive analog signals it is necessary to carry out these conversions to facilitate PCM transmission. An analog to digital converter is thus provided at each subscriber station for converting received digital signals into analog signals and analog signals to be transmitted into digital signals; the converter utilizes the iterative principle.
Abstract:
A signal converting circuit for converting an analog signal to a digital signal, or vice versa, comprises a sampling capacitor which is charged to an input signal level during the period of a sampling pulse. A reference capacitor grounded at one end receives charges from the sampling capacitor in response to a first clock pulse. A predetermined reference potential is impressed on a terminal of the sampling capacitor at the time of the sampling pulse and a ground potential at the time the sampling pulse is not present. The reference capacitor is charged in response to the first clock pulse, and is discharged in response to a second clock pulse which alternates with the first clock pulse. The presence of a potential at the sampling capacitor less than the predetermined reference potential is detected, and the cycles of discharging of the reference capacitor that occur until the potential at the sampling capacitor is less than the reference potential are counted.Analog-to-digital (A/D) conversion is achieved by counting the number of discharges of the reference capacitor charged from the sampling capacitor. Digital-to-analog (D/A) conversion is carried out in the circuit when the sampling capacitor is charged to the predetermined potential of the sampling capacitor at the time a digital signal is taken out.