摘要:
A storage rack vibration isolator for a storage rack system installed on a floor comprising a first mounting plate connectable to the storage rack system, a second mounting plate connectable to the floor. An elastomeric component extending between these mounting plates and is operatively attached to them so that during seismic events the first and second mounting plates remain attached to the elastomeric component as the elastomeric component is placed in shear while the first and second mounting plates are able to move in planes substantially parallel to each other. The elastomeric component comprises at least one elastomeric member made of material that is capable of absorbing and dissipating the energy of ground movement imparted to the storage rack system during seismic events, while the material enables the storage rack system to move a sufficient distance relative to the floor to lower the natural frequency of the storage rack system in at least one horizontal direction.
摘要:
A storage rack system to be installed on a floor has a plurality of columns, is more flexible in a down aisle dimension than it is in a cross aisle dimension, and has at least a first column and a second column adjacent one another in the cross aisle dimension. A storage rack vibration isolator for use with this storage rack system comprises at least one seismic vibration absorption and dissipation structure constructed to be located primarily between the first and second columns to reduce the storage rack system's natural frequency in at least the cross aisle dimension. The seismic vibration absorption and dissipation structure includes a first member connectable to the storage rack system and a second member connectable to the floor. At least one column support assembly is mountable to at least the first and second columns to enable them to move with respect to the floor. A structure limits the movement of the first and second columns to substantially the cross aisle dimension.
摘要:
A push back storage rack system for storing multiple loads in a single inclined cart lane. Each lane contains at least two wheeled carts, each cart being capable of receiving and storing multiple pallet loads. The carts are vertically spaced so that they can freely slide underneath each other when unloaded. Beginning with the first or lowest level cart in the system, each successively higher cart is also wider and longer than the cart immediately beneath it. The carts are positioned on at least one but potentially two pairs of rectangular tracks or tubes, each tube being capable of supporting two or four individual carts, depending on how the carts are constructed and installed on the tubes. The tubes are mounted on an incline away from a loading end of each lane so that when loads are placed on or are removed from a lane, the carts are biased toward the loading end of the lane by the force of gravity. Each tube has a single, planar upper support surface which has inside and outside edges. The wheels of each cart ride only on either the inside or outside edges of the tubes on which they are mounted, allowing more than one vertically spaced cart to occupy the same tube.
摘要:
A beam and tension rod arrangement is for use with a push back storage rack system. A front beam extends between two front vertical uprights across the loading position of one or more cart lanes. An interior structural cross support extends between two interior vertical uprights that are located at points along the length of each cart lane. Diagonal tension rods extend from each end of the interior structural cross support to points on the front beam's structural angles brackets that are adjacent the middle portion of the front beam. When a loaded cart collides with the front beam, the majority of the collision forces are directed toward the middle portion of the front beam, which exerts diagonal tension forces on the tension rods between the front beam and the interior structural cross support. The diagonal tension rods serve to brace the front beam against flexing, transferring much of the impact strain to the interior structural cross support. The tension rods distribute the impact forces exerted against the front beam among the system's multiple interior vertical uprights to reinforce the front beam.