Abstract:
A seismic streamer includes a sensor comprises an axially oriented body including a plurality of axially oriented channels arranged in opposing pairs; a plurality of hydrophones arranged in opposing pairs in the channels; a pair of orthogonally oriented acoustic particle motion sensors; and a tilt sensor adjacent or associated with the particle motion sensors. The streamer has a plurality of hydrophones, as previously described, aligned with a plurality of accelerometers which detect movement of the streamer in the horizontal and vertical directions, all coupled with a tilt sensor, so that the marine seismic system can detect whether a detected seismic signal is a reflection from a geologic structure beneath the streamer or a downward traveling reflection from the air/seawater interface.
Abstract:
Disclosed is an encapsulated hydrophone assembly for use in a towed hydrophone array. The assembly comprises (1) a hydrophone element having a hydrophone electrical conductor, (2) an insulated input electrical lead and an insulated output electrical lead coupled to the hydrophone electrical conductor, (3) an electromagnetic shield surrounding the hydrophone element and the hydrophone electrical conductor, the input electrical lead and the output electrical lead extending from the electromagnetic shield and (4) a layer of encapsulating material surrounding the hydrophone element, the hydrophone electrical conductor, a portion of the input electrical lead, a portion of the output electrical lead and the electromagnetic shield to thereby form the hydrophone assembly. The material electrically insulates the electromagnetic shield from the hydrophone electrical conductor, the input electrical lead and the output electrical lead and prevents fluids surrounding the hydrophone assembly from contacting the electromagnetic shield.
Abstract:
A seismic streamer includes a sensor comprises an axially oriented body including a plurality of axially oriented channels arranged in opposing pairs; a plurality of hydrophones arranged in opposing pairs in the channels; a pair of orthogonally oriented acoustic particle motion sensors; and a tilt sensor adjacent or associated with the particle motion sensors. The streamer has a plurality of hydrophones, as previously described, aligned with a plurality of accelerometers which detect movement of the streamer in the horizontal and vertical directions, all coupled with a tilt sensor, so that the marine seismic system can detect whether a detected seismic signal is a reflection from a geologic structure beneath the streamer or a downward traveling reflection from the air/seawater interface.
Abstract:
Disclosed is a protocol for transmitting data in a towed hydrophone streamer, including a transmission method and a data frame. The method comprises the steps of (1) receiving a portion of the data frame into a data transmission circuit within a particular module of the streamer, the portion of the data frame representing telemetry data derived from an adjacent module, the transmission circuit transmitting the portion of the data frame to a desired destination, (2) receiving an end-of-data signal into the transmission circuit, the end-of-data signal commanding the transmission circuit to add telemetry data derived from the particular module to the portion of the data frame and (3) adding the data derived from the particular module to the portion of the data frame, the data frame thereby transmitted to the destination and including the data derived from the particular module, the telemetry data ordered within the frame as a function of an order of modules within the streamer.
Abstract:
Disclosed are a filtered hydrophone circuit and a method of filtering hydrophone output signals. The circuit, in its most elemental embodiment comprises: (1) a hydrophone having first and second output conductors, the hydrophone producing an electrical signal of varying frequency, (2) an operational amplifier having first and second inputs and an output, the first amplifier input coupled to the first hydrophone output conductor, (3) a first resistor coupling the amplifier output to a second resistor, the second resistor further coupled to an electrical ground and (4) a capacitor coupling the second amplifier input to a point between the first and second resistors to thereby define a feedback path between the amplifier output and the second amplifier input for portions of the hydrophone electrical signal above a selected cutoff frequency, an output signal of the amplifier thereby substantially freed of the portions of the output signal below the selected cutoff frequency.
Abstract:
Disclosed is a towed hydrophone streamer module comprising: (1) an elongated, fluid-resistant jacket having a substantially circular cross section, the water resistant jacket having mating connectors at ends thereof, (2) a plurality of sensors distributed in a spaced-apart relationship within the jacket, (3) a data bus positioned along a length of the jacket and terminating in electrical contacts in the mating connectors and (4) a plurality of cylindrical, fluid-resistant electronics housings disposed within the jacket in a spaced-apart relationship along a length thereof, each of the plurality of housings having a circuit board therein and spanning a length thereof and end caps at ends thereof, one of the end caps having electrical contacts coupled to components on the circuit board, a center-line of the housings substantially in alignment with a center-line of the jacket, the components coupling the plurality of sensors to the data bus for electrical communication therewith. In contrast with prior art streamers having electronics canisters centrally located between modules, the present invention spreads the electronics throughout the module, decreasing the viscous and turbulent drag of the module as it is towed, spreading heat dissipation more evenly throughout the module and allowing the jacket to be only 2 inches in diameter, in a preferred embodiment.
Abstract:
Disclosed is a protocol for transmitting data in a towed hydrophone streamer, including a transmission method and a data frame. The method comprises the steps of (1) receiving a portion of the data frame into a data transmission circuit within a particular module of the streamer, the portion of the data frame representing telemetry data derived from an adjacent module, the transmission circuit transmitting the portion of the data frame to a desired destination, (2) receiving an end-of-data signal into the transmission circuit, the end-of-data signal commanding the transmission circuit to add telemetry data derived from the particular module to the portion of the data frame and (3) adding the data derived from the particular module to the portion of the data frame, the data frame thereby transmitted to the destination and including the data derived from the particular module, the telemetry data ordered within the frame as a function of an order of modules within the streamer.