Abstract:
The present invention relates to a continuous ion exchange methodology for production of ammonium-potassium polyphosphate solutions using agricultural grade phosphoric acid, anhydrous ammonia, and agricultural grade potassium chloride (ag potash) as primary feedstocks. The method is particularly applicable to the production of these low salt index, specialty liquid fertilizer solutions and allows for the use of less expensive ag-potash and impure phosphoric acid as the potassium and phosphate sources in order to produce the ammonium-potassium polyphosphate compounds, which are chloride free as a result of the ion ex-change process.
Abstract:
In alternative embodiments, provided are methods and processes for the removal of cadmium (Cd) from wet-process phosphoric acid that may contain Cd, including excessive amounts of Cd. The process developed is based on the application of commercially available ion exchange resins with the application of Continuous Ion Exchange (CIX) technology. In alternative embodiments, provided are processes and methods for the recovery and/or the removal of cadmium from wet-process phosphoric acid using a continuous ion exchange approach. In alternative embodiments, use of processes and methods as provided herein allows for the reduction of cadmium metal contaminants with minimal phosphate losses and dilution in order to produce a phosphoric acid that is suitable for the production of fertilizers and phosphoric acid products, such as world-class diammonium phosphate fertilizer (DAP), merchant-grade phosphoric acid, super-phosphoric acid, and other phosphoric acid products.
Abstract:
In alternative embodiments, provided are methods and processes for the removal of cadmium (Cd) from wet-process phosphoric acid that may contain Cd, including excessive amounts of Cd. The process developed is based on the application of commercially available ion exchange resins with the application of Continuous Ion Exchange (CIX) technology. In alternative embodiments, provided are processes and methods for the recovery and/or the removal of cadmium from wet-process phosphoric acid using a continuous ion exchange approach. In alternative embodiments, use of processes and methods as provided herein allows for the reduction of cadmium metal contaminants with minimal phosphate losses and dilution in order to produce a phosphoric acid that is suitable for the production of fertilizers and phosphoric acid products, such as world-class diammonium phosphate fertilizer (DAP), merchant-grade phosphoric acid, super-phosphoric acid, and other phosphoric acid products.
Abstract:
In alternative embodiments, provided are methods and processes for the removal of cadmium (Cd) from wet-process phosphoric acid that may contain Cd, including excessive amounts of Cd. The process developed is based on the application of commercially available ion exchange resins with the application of Continuous Ion Exchange (CIX) technology. In alternative embodiments, provided are processes and methods for the recovery and/or the removal of cadmium from wet-process phosphoric acid using a continuous ion exchange approach. In alternative embodiments, use of processes and methods as provided herein allows for the reduction of cadmium metal contaminants with minimal phosphate losses and dilution in order to produce a phosphoric acid that is suitable for the production of fertilizers and phosphoric acid products, such as world-class diammonium phosphate fertilizer (DAP), merchant-grade phosphoric acid, super-phosphoric acid, and other phosphoric acid products.