Abstract:
A system and a method for generating a respirable dry powder aerosol (15) from a liquid solution or liquid suspension at a respirable dry powder aerosol volume flow (91). A liquid aerosol generating nozzle (3) generates from the liquid solution or liquid suspension a liquid aerosol (13) that is diluted by dilution gas (4) and dried in a cylindrical evaporation chamber (6) to generate a dry powder aerosol (14) that is subsequently concentrated by a cylindrical single linear slit aerosol concentrator (9). The system and method may include heliox as a gas, specifically dilution gas (4), for enhancing both the drying process in the cylindrical evaporation chamber (6) and for enhancing the concentration efficiency, but also as a nozzle gas (2) for enhancing generating the liquid aerosol (13) from the liquid solution or liquid suspension.
Abstract:
A system and a method for generating a respirable dry powder aerosol (15) from a liquid solution or liquid suspension at a respirable dry powder aerosol volume flow (91). A liquid aerosol generating nozzle (3) generates from the liquid solution or liquid suspension a liquid aerosol (13) that is diluted by dilution gas (4) and dried in a cylindrical evaporation chamber (6) to generate a dry powder aerosol (14) that is subsequently concentrated. The system and method may include heliox as a gas, specifically dilution gas (4), for enhancing both the drying process in the cylindrical evaporation chamber (6) and for enhancing the concentration efficiency, but also as a nozzle gas (2) for enhancing generating the liquid aerosol (13) from the liquid solution or liquid suspension.
Abstract:
An aerosol generating system for generating a respirable dry powder aerosol from a liquid solution or liquid suspension, having: a liquid aerosol generating nozzle having a nozzle input end designed to receive the liquid solution or liquid suspension, and having a nozzle heliox supply designed to receive nozzle heliox, the liquid aerosol generating nozzle further having a nozzle output end for outputting a liquid aerosol suspended in the nozzle heliox; and a cylindrical evaporation chamber having a cylindrical evaporation chamber input end that is connected to the nozzle output end and connected to a dilution heliox supply for receiving both the liquid aerosol suspended in the nozzle heliox and for receiving the dilution heliox, and the cylindrical evaporation chamber having a cylindrical evaporation chamber output end outputting a first intermediate dry powder aerosol at a first intermediate dry powder aerosol volume flow of a specific concentration.
Abstract:
A nozzle and a method of generating an aerosol from a fluid and a gas by operating the nozzle. The nozzle has an aerosol exit orifice of a larger diameter and a fluid exit orifice of a smaller diameter aligned on a common central axis. A pressurized gas from a pressurized gas exit in close proximity to the fluid exit orifice intersects a fluid jet exiting from the fluid exit orifice at that acute angle and in a distance from the aerosol exit orifice. The method includes aerosolizing a fluid with a viscosity exceeding 4 cSt delivering an inhalable medication at a rate of more than 1 ml/minute, thereby delivering a medication at a mass flow rate of at least 30 mg/minute in form of the fluid particles having a mass median aerodynamic diameter (MMAD) of 6 μm or less.
Abstract:
A system and a method for generating a respirable aerosol from a liquid solution or liquid suspension. A liquid solution or liquid suspension is supplied at a liquid pressure, and a pressurized aerosolizing gas is supplied at a pressurized aerosolizing gas pressure to an aerosol generating nozzle having an aerosol exit orifice through which the liquid solution or liquid suspension is released into an aerosolizing space. Controlling the pressure of an aerosolizing gas by a controller modulates a gas pressure of the pressurized aerosolizing gas in the aerosolizing space to alternatingly exceed above and drop below a fluid pressure at the fluid exit, controlling an aerosol generation duration by the time the pressurized aerosolizing gas pressure is kept by the controller below the fluid pressure at the fluid exit.
Abstract:
A nozzle and a method of generating an inhalable aerosol from a liquid solution or liquid suspension and a gas by operating the nozzle. A column-like aerosol plume is generated having fluid particles within a particle free sheath of gas, the aerosol plume being generated from a compressed gas interacting within the aerosolizing space with a fluid ejected along the central axis, and generates a Venturi effect entraining gas that flows over the convex outer nozzle surface that together with the particle free sheath keeps the circumferential edge and the outer nozzle surface free of particle deposition. An aerosol exit orifice diameter is at least 1.3 times larger than the fluid exit orifice diameter; and a converging annular pressurized gas channel extending at an acute gas flow angle of 10-30° with respect to a central axis.
Abstract:
A system and a method for generating a respirable dry powder aerosol from a liquid solution or liquid suspension at a respirable dry powder aerosol volume flow. A liquid aerosol generating nozzle generates from the liquid solution or liquid suspension a liquid aerosol that is diluted by dilution gas and dried in a cylindrical evaporation chamber to generate a dry powder aerosol. The system and method include heliox as a gas, specifically dilution gas, for enhancing the drying process in the cylindrical evaporation chamber, but also as a nozzle gas for enhancing generating the liquid aerosol from the liquid solution or liquid suspension.
Abstract:
A system and a method for generating a respirable dry powder aerosol (15) from a liquid solution or liquid suspension at a respirable dry powder aerosol volume flow (91). A liquid aerosol generating nozzle (3) generates from the liquid solution or liquid suspension a liquid aerosol (13) that is diluted by dilution gas (4) and dried in a cylindrical evaporation chamber (6) to generate a dry powder aerosol (14) that is subsequently concentrated by a cylindrical single linear slit aerosol concentrator (9). The system and method may include heliox as a gas, specifically dilution gas (4), for enhancing both the drying process in the cylindrical evaporation chamber (6) and for enhancing the concentration efficiency, but also as a nozzle gas (2) for enhancing generating the liquid aerosol (13) from the liquid solution or liquid suspension.