Abstract:
Disclosed is a cathode active material for a lithium ion secondary battery which includes a lithium manganese borate compound and a manganese oxide. The lithium manganese borate compound contains a larger amount of lithium than conventional lithium manganese borate compounds. Therefore, a larger amount of lithium is deintercalated in a battery including the cathode active material, and as a result, the specific capacity of the battery reaches 100-160 mAh/g, which is much higher than that of conventional lithium ion secondary batteries (
Abstract:
An anode active material for a sodium ion secondary battery, a sodium ion secondary battery including an anode active material, and an electric device including the sodium ion secondary battery are disclosed. The anode active material for a sodium ion secondary battery includes a cobalt tin spinel oxide represented by Co2.4Sn0.6O4. The sodium ion secondary battery includes an anode made of an anode active material composed of a cobalt tin spinel oxide represented by Chemical Formula 1 below: Co2+xSn1-xO4, Chemical Formula 1 where x is a real number satisfying 0≤x≤0.9; an electrolyte; and a cathode. The sodium ion secondary battery has high capacity characteristics. The electric device including the sodium ion secondary battery includes an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and an electric power storage system.
Abstract:
The present disclosure relates to a cathode active material for a secondary battery, a cathode for a secondary battery including the same, a secondary battery including the cathode for a secondary battery and manufacturing methods thereof. More particularly, it is possible to obtain a secondary battery having excellent electrochemical characteristics by electrochemically inducing a structural phase change in the cathode active material of a secondary battery including NaCl as a cathode active material.
Abstract:
Disclosed is a method of preparing a cathode active material useful in a sodium ion secondary battery having high reversible capacity and excellent cycle characteristics. The method for preparing a cathode active material composed of Zrw-doped NaxLiyMzOa includes the steps of (A) doping LiyMzOa with Zrw to provide Zrw-doped LiyMzOa; and (B) dissociating Li ion from the Zrw-doped LiyMzOa and inserting Na ion thereto to provide the Zrw-doped NaxLiyMzOa, wherein M is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, Ru, and combinations thereof, and wherein 0.005