Abstract:
The present invention relates to a forward osmosis-based separation membrane based on a multilayer thin film, using crosslinking between organic monomers, and a preparation method therefore, and in the preparation of the forward osmosis-based separation membrane including a support layer and a selective layer, a middle layer is provided between the support layer and the selective layer so as to prevent a phenomenon in which the selective layer is filled in a pore of the support layer, such that the thickness of a multilayer thin film constituting the selective layer is optimized, and excellent water permeability, salt removal rate and pollution resistance properties are exhibited through the support layer having a structure of uniform surface pores and minimized pore distortion.
Abstract:
Provided is a composition for use in fabricating a carbon molecular sieve membrane, including a fluorine-containing polymer matrix and polysilsesquioxane. The composition shows high selectivity to the gas to be separated and high separation quality by controlling the mixing ratio of the fluorine-containing polymer matrix with polysilsesquioxane as well as the type of fluorine-containing polymer matrix and polysilsesquioxane. Ancillary selective pore formation is enhanced by a so-called “autogenous fluorinated gas induced siloxane etching” (A-FISE) mechanism of fluorine-containing polymer/polysilsesquioxane blend precursors during carbonization. Therefore, it is possible to effectively separate gases having a small difference in particle size, which, otherwise, are difficult to be separated with the conventional polymer membranes.
Abstract:
The present disclosure provides a gas separation membrane using a ladder-structured polysilsesquioxane in which organic functional groups are attached to a long siloxane chain and a method for fabricating the same. In accordance with the present disclosure, a free-standing ladder-structured polysilsesquioxane-based membrane with various functional groups can be fabricated for gas separations. The performance of the gas separation membrane can be controlled through a variety of combinations of the organic functional groups linked to the siloxane chain. In addition, by controlling the molecular structure of the gas separation membrane through mixing of the ladder-structured polysilsesquioxane with an amine compound or conventional glassy or rubbery polymers or through thermal/UV-curing, the permeability and selectivity of the gas separation membrane can be controlled selectively.