Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.
Abstract:
A rotary cutting tool with a longitudinal axis includes a shank portion and a cutting portion defining a length of cut. The cutting portion includes a plurality of blades separated by flutes extending along the length of cut. A first blade forms a first helix angle with respect to the longitudinal axis at the cutting tip. A second blade adjacent the first blade forms a second, different helix angle with respect to the longitudinal axis at the cutting tip. The cutting edge of the first blade is formed at a first distance with respect to the cutting edge of the second blade. A helix angle of at least one of the plurality of blades varies along the length of cut and a distance between cutting edges of the first and second blades varies along the length of cut.
Abstract:
A rotary cutting tool with a longitudinal axis includes a shank portion and a cutting portion defining a length of cut. The cutting portion includes a plurality of blades separated by flutes extending along the length of cut. A first blade forms a first helix angle with respect to the longitudinal axis at the cutting tip. A second blade adjacent the first blade forms a second, different helix angle with respect to the longitudinal axis at the cutting tip. A third blade adjacent the second blade forms a third, different helix angle with respect to the longitudinal axis at the cutting tip. The first, second and third helix angles deviate by at least 2 degrees. The cutting edges of the first, second and third blades have unequal indexing.
Abstract:
A rotary cutting tool with a longitudinal axis includes a shank portion and a cutting portion defining a length of cut. The cutting portion includes a plurality of blades separated by flutes extending along the length of cut. A first blade forms a first helix angle with respect to the longitudinal axis at the cutting tip. A second blade adjacent the first blade forms a second, different helix angle with respect to the longitudinal axis at the cutting tip. The cutting edge of the first blade is formed at a first distance with respect to the cutting edge of the second blade. A helix angle of at least one of the plurality of blades varies along the length of cut and a distance between cutting edges of the first and second blades varies along the length of cut.
Abstract:
A rotary cutting tool with a longitudinal axis includes a shank portion, a cutting portion, and a cutting tip. The cutting portion includes a plurality of blades and a plurality of flutes. Each blade includes a leading face, a trailing face, and a land surface extending between the leading face and the trailing face. The cutting tip includes a corner radius, a first portion formed with a first dish angle, and second portion formed with a second dish angle and a third portion formed with a third dish angle. The trailing face contacts the work during a ramp operation in such a way that the first, second and third portions have a double positive geometry to provide the cutting tool with high ramp angle capability.
Abstract:
A rotary cutting tool with a longitudinal axis includes a shank portion and a cutting portion defining a length of cut. The cutting portion includes a plurality of blades separated by flutes extending along the length of cut. A first blade forms a first helix angle with respect to the longitudinal axis at the cutting tip. A second blade adjacent the first blade forms a second, different helix angle with respect to the longitudinal axis at the cutting tip. A third blade adjacent the second blade forms a third, different helix angle with respect to the longitudinal axis at the cutting tip. The first, second and third helix angles deviate by at least 2 degrees. The cutting edges of the first, second and third blades have unequal indexing.
Abstract:
A milling cutter includes a shank and a cutting head attached to the shank. The cutting head has a plurality of helical teeth, each tooth including a cutting tip, a leading face and a rear face. A flute is defined between the leading face of a trailing tooth, and a rear face of an immediately preceding tooth. A gully of the flute has a flute base with a portion that is planar or convex in profile to provide additional volume for effective chip evacuation. A method for manufacturing the milling cutter includes rotating a cylindrical blank about its own longitudinal axis, rotating a disc-shaped flute grinding wheel) about a rotational axis of a flute wheel and moving the grinding wheel in a longitudinal direction so as to form the helical flute with the gully having the flute base with the planar or convex portion in profile.
Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.