Abstract:
Provided is a rotary milling tool capable of finishing a milled surface to produce a smooth and glossy surface. A rotary milling tool in which a plurality of chip discharge grooves (2) are provided to the outer periphery of a tip part of a tool body (1), the plurality of chip discharge grooves (2) extending from the tool tip toward the tool base, and bottom blades (5, 6) are provided to an intersection ridge part at the intersection of a rake surface (3) of the chip discharge grooves (2) and a tip flank surface (4) of the tool body (1), each of the bottom blades (5, 6) being formed integrally with the tool body (1), wherein a convex edge (7) that is convex toward a tool-axis-direction tip is formed on at least one of the bottom blades (5, 6), and the convex edge (7) is formed by the connection of a plurality of linear edges that are substantially linear.
Abstract:
A compression milling cutter includes a shank and a front cutting portion that terminates at a leading end of the milling cutter. The front cutting portion has a first circumferential row of one or more insert receiving pockets proximate a leading end of the milling cutter, and a second circumferential row of one or more insert receiving pockets, each insert receiving pocket configured to receive a respective indexable cutting insert. The cutting insert mounted in the first circumferential row has a positive axial rake angle, A, and the indexable cutting insert mounted in an insert pocket of the second circumferential row has a negative axial rake angle, B. Because of the different axial rake angles, chips generated during a machining operation flow in opposite directions, thereby creating a compression zone disposed between the first and second circumferential rows. This compression zone replicates the cutting action of a solid end mill, particularly when machining fiber reinforced plastic materials.
Abstract:
A face milling tool includes a body which is rotatable about an axis, at least one wiper tooth, and at least two primary cutting teeth mounted on the body having a cutting edge for cutting about the axis. The primary cutting teeth are staggered radially relative to each other by a radial shift so that a chip load variation during operation is less than 0.7 times a mean primary-tooth chip load. A method for determining the primary cutting tooth radial positions on a face milling tool body is provided such that a chip load variation during operation is less than 0.7 times a mean primary-tooth chip load.
Abstract:
A shaft portion and a blade portion provided on a side surface of the shaft portion are included, and the blade portion includes cutting blades arranged in a plurality of lines on a side surface of the shaft portion along a peripheral direction, and arranged in a plurality of stages in an extending direction of a shaft center of the shaft portion in each line. Further, the cutting blade has a radial-direction clearance angle, a tip end-side clearance angle, and a base end-side clearance angle.
Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.
Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.
Abstract:
A rotary cutting tool has a plurality of circumferentially spaced grooves, each having a plurality of cutting inserts mounted. Each cutting insert has a wave-shaped major cutting edge, a corner cutting edge, and a minor cutting edge. The cutting inserts are arranged such that, the phases of the waves of the rotational trajectories formed by the cutting inserts that are adjacent to each other in a direction along the tool rotational axis coincide with each other in one groove. Also, the rotational trajectories of at least part of cutting edge portions of at least some cutting inserts are overlapped with each other in the direction of the tool rotational axis. Accordingly, even when the cutting edge portion is used as a major cutting edge and as an inner cutting edge, it is still possible to reduce cutting load and suppress breakage.
Abstract:
Milling tools configured to increase surface roughness are disclosed. The tool may include an elongated body having a longitudinal axis and a plurality of cutting inserts coupled to the body and spaced along the longitudinal axis, each cutting insert having a cutting edge. In one embodiment, the cutting edges may have an orientation that is oblique to the longitudinal axis of the elongated body. Each cutting edge may have a first end having a greater cutting radius than a second end. The cutting edges may be offset from the longitudinal axis of the elongated body by an offset angle. In another embodiment, the cutting edges may have a textured or rough surface profile. For example, the cutting edges may have a mean roughness (Rz) of at least 7.5 μm. The milling tools may increase the surface roughness of a milled engine bore to facilitate a subsequent rough honing process.
Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.
Abstract:
End mills are disclosed which may be made monolithically of ceramic or other materials. The cutting portions of the end mills have lengths of cut that are no more than twice their cutting diameters and cores which are at least 0.7 times their cutting diameters. Their axial blades have cutting edges with negative radial rake and are separated by helical flutes. Their cutting ends have negative axial rake and are gashed ahead of center and have radial cutting edges with negative rake. Such end mills also have radiused corners and gashes transitioning from radial to axial at a flute. Methods of milling materials using such ceramic end mills are also disclosed.