Abstract:
Provided is a device for real-time measurement of bacteria. The device for real-time measurement of bacteria includes reaction portions, a support portion configured to support the reaction portions, a rotational shaft configured to transfer the support portion, and a sample supply portion configured to supply a sample to each of the reaction portions, and according to the device for real-time measurement of bacteria, bacteria may be measured in real time through the detection of ATP.
Abstract:
Provided is a wet cyclone apparatus including a body, an inlet installed in the body, and having a passage through which air including airborne particles is sucked in, a wet cyclone connected to the inlet to wet and collect the airborne particles introduced from the inlet, and a water storage installed in the body to store water, wherein the wet cyclone includes an air suction port into which the air introduced from the inlet is sucked, a water inlet through which water is supplied from the water storage, and a sample outlet through which the collected wetted sample is extracted and discharged.
Abstract:
Provided are a single-stranded nucleic acid aptamer specifically binding to E. coli and a method for detecting E. coli using the same. The method, kits or sensors of the present disclosure enable E. coli to be specifically detected among microorganisms existing in a water system, but also be applied in fields such as food sanitation or medical diagnosis.
Abstract:
Provided are a single-stranded nucleic acid aptamer simultaneously and specifically binding to various types of microorganisms, and a method of manufacturing the nucleic acid aptamer. For example, provided are a probe that is capable of simultaneously detecting or diagnosing a variety of microorganisms, and a method of manufacturing an aptamer having characteristics of such a probe.
Abstract:
The present specification may provide a novel single-stranded nucleic acid aptamer capable of simultaneous detection of seven Cronobacter species, a composition or kit for multiple detection comprising the aptamer. The novel single-stranded nucleic acid aptamer of the disclosure can bind to all seven reclassified Cronobacter species, which are pathogenic bacteria, with high binding affinity due to its affinity and specificity. Therefore, the seven Cronobacter species can be easily and efficiently multi-detected from the environment where various bacteria are colonized and inhabited, and from contaminated food and water.
Abstract:
Provided is a single-stranded nucleic acid aptamer specifically binding to Klebsiella pneumoniae, and a method for detecting Klebsiella pneumoniae by using the same. The aptamer of the present disclosure, and a method, a composition, a kit or a sensor of using the same may be used to specifically detect Klebsiella pneumoniae present in an aqueous environment, foods, and medical samples and also be applied in fields such as sanitary conditions of foods and medical diagnosis.