Abstract:
A liquid crystal display device may include: a liquid crystal display panel comprising a first and a second common voltage supply line formed in a first direction at both side ends of the substrate, and at least one feedback line formed in the first direction and connected to the first common voltage supply line and/or the second common voltage supply line; and at least one common voltage compensating circuit, an output terminal of which is connected to the first and the second common voltage supply lines, and an input terminal of which is connected to the feedback line.
Abstract:
Disclosed is an in-cell touch type touch display device in which the number of touch lines is reduced to increase a transmittance, and the number of touch integrated circuits (ICs) is reduced to lower the manufacturing cost. The touch display device includes a touch display panel and a driving circuit unit. A plurality of touch sensors may be disposed in the touch display panel, and a plurality of subpixels including a common electrode may be provided between the plurality of touch sensors. The subpixels may be provided between the plurality of touch sensors which are adjacent to each other in a horizontal direction and a vertical direction. The driving circuit unit may include a touch driver, a touch sensing unit, and a power supply. The touch driver may supply a touch driving signal to the plurality of touch sensors.
Abstract:
Disclosed are a touch driving device, a driving method thereof, and a display device including the same, which reduce power consumption. A touch driving device comprises a first circuit configured to generate a touch driving signal including a plurality of pulses with varying amplitudes or varying periods, responsive to detection of presence or absence of a touch on the touch sensitive display panel during a touch sensing period, and a second circuit configured to apply the touch driving signal to a touch electrode of the touch sensitive display panel during the touch sensing period.
Abstract:
Disclosed is a display panel. The display panel includes a plurality of first electrodes, a plurality of second electrodes, a plurality of first electrode lines, and a plurality of second electrode lines. The first electrodes are provided in a display part and are used as a common electrode and a touch electrode. The second electrodes are used a common electrode and each second electrode is disposed adjacent to at least one of the first electrodes. The first electrode lines extend to a non-display part disposed outside the display part and are each connected to a corresponding one of the first electrodes. The second electrode lines extend to the non-display part and are connected to at least two of the second electrodes and supply a common voltage to the second electrodes connected to the second electrode lines.
Abstract:
Disclosed is an in-cell touch type touch display device and a method of driving the same, which prevent an error of a touch operation from being caused by the delay of a touch report occurring in a large-screen touch display device. The touch display device includes a touch panel, including a plurality of touch sensors, and a driving circuit unit. The driving circuit unit may include a plurality of source/touch driving ICs and a touch IC. The plurality of source/touch driving ICs may supply a touch driving signal to the plurality of touch sensors. The touch IC may perform a touch operation based on touch reports received from the plurality of source/touch driving ICs.
Abstract:
Disclosed is a display panel. The display panel includes a plurality of first electrodes, a plurality of second electrodes, a plurality of first electrode lines, and a plurality of second electrode lines. The first electrodes are provided in a display part and are used as a common electrode and a touch electrode. The second electrodes are used as the common electrode and each second electrode is disposed adjacent to at least one of the first electrodes. The first electrode lines extend to a non-display part disposed outside the display part and are each connected to a corresponding one of the first electrodes. The second electrode lines extend to the non-display part and are connected to at least two of the second electrodes and supply a common voltage to the second electrodes connected to the second electrode lines.
Abstract:
Disclosed are an in-cell touch type touch display device that includes a touch display panel, where a plurality of touch sensors are disposed, and a driving circuit unit. Each of the plurality of touch sensors are disposed to correspond to a plurality of subpixels, and each of the plurality of touch sensors may include one or more touch switches. The one or more touch switches disposed in each of the plurality of touch sensors divisionally drive the plurality of touch sensors by 1/n (where n is a natural number equal to or more than two).
Abstract:
Disclosed are an in-cell touch type touch display device that includes a touch display panel, where a plurality of touch sensors are disposed, and a driving circuit unit. Each of the plurality of touch sensors are disposed to correspond to a plurality of subpixels, and each of the plurality of touch sensors may include one or more touch switches. The one or more touch switches disposed in each of the plurality of touch sensors divisionally drive the plurality of touch sensors by 1/n (where n is a natural number equal to or more than two).