Abstract:
Provided is a display device that includes a display panel defined with an active area displaying an image and an inactive area outside the active area, the display panel including a substrate having a first surface and a second surface opposite the first surface; a plurality of pixels on the first surface of the substrate in the active area, each pixel including a pixel drive circuit; a transparent conductive layer on the second surface of the substrate covering the active area and a part of the inactive area; and a metal pattern on the second surface of the substrate in the inactive area, the metal pattern electrically connected to the transparent conductive layer, receiving an electrical signal and having a lower resistance than the transparent conductive layer, wherein the metal pattern serves as a conductive path to reduce a potential difference with respect to the electrical signal in an entire area of the transparent conductive layer compared to a display device without the metal pattern.
Abstract:
Disclosed is a method of manufacturing a display device having a display area and a non-display area, the method including aligning a mask over a substrate, the mask including a central shield portion, a peripheral shield portion outside the central shield portion, with an opening between the central shield portion and the peripheral shield portion, a holding portion in the opening that connects the central shield portion with the peripheral shield portion, and a diffusion area under the holding portion defined by a thickness difference of the mask between the holding portion and one of the central and peripheral shield portions; depositing a conductive material on the substrate through the mask to form a single pieced, loop-shaped conductive path surrounding the display area in the non-display area; and forming a transparent conductive layer on the substrate, the transparent conductive layer being continuously formed in the display and non-display areas and formed to be in direct contact with the single pieced, loop-shaped conductive path.
Abstract:
Provided is a display device. The display device includes a flexible substrate comprising an active area, and a non-active area surrounding a border of the active area; a thin-film transistor and a light-emitting element on the active area; an encapsulation unit over the thin-film transistor and the light-emitting element; a hole formed in the active area by removing a portion of the flexible substrate; a first common layer disposed on a side surface of the hole, extended from the light-emitting element and comprising same elements with the light-emitting element; and a tip protruding from the side surface of the hole. The first common layer disposed adjacent to the tip is disconnected from the light-emitting element.
Abstract:
A display device comprises a display panel configured to display an image. A fingerprint sensor is under the display panel and is configured to sense a fingerprint. An impact mitigating layer partially surrounds the fingerprint sensor and is configured to absorb impacts or pressure to the display device. A shielding layer is between the display panel and the fingerprint sensor and the impact mitigating layer. The shielding layer blocks at least one of heat, electromagnetic interference, or light.