Abstract:
The present disclosure relates to a display device including a light emitting element display. The present disclosure suggests a flat panel display comprising: a substrate; a driving element disposed on a first surface of the substrate; an organic light emitting diode disposed on a second surface of the substrate; a through-hole penetrating the substrate from the front surface to the rear surface; and a connecting electrode filling the through-hole for linking the driving element to the organic light emitting diode.
Abstract:
An organic light emitting display can include a display panel including a plurality of pixels of a source following manner, in which a source voltage of a driving thin film transistor (TFT) is changed according to a current flowing between a drain electrode and a source electrode of the driving TFT, a gate driving circuit for generating a mobility sensing gate pulse for operating the pixel in the source following manner, a data driving circuit for detecting a sensing voltage corresponding to mobility of the driving TFT from the pixel in response to the mobility sensing gate pulse, and a timing controller for setting a mobility sensing period in a period, in which a gate-source voltage of the driving TFT is greater than a threshold voltage of the driving TFT.
Abstract:
An organic light-emitting display device is disclosed. The organic light emitting display device includes a display panel including sub-pixels emitting light of at least three colors, and a driver supplying a driving signal to the display panel, wherein each of the sub-pixels emitting at least three colors includes an opening region emitting its own color and a light-emitting participation region additionally emitting the same color as or different color from the its own color.
Abstract:
A display device, includes a substrate; first to fourth subpixels sequentially arranged on the substrate; a first power line on a left side of the first subpixel and shared by the first and second subpixels; a sensing line between the second subpixel and the third subpixel and shared by the first to fourth subpixels; a second power line on a right side of the fourth subpixel and shared by the third and fourth subpixels; and a first data line on the left side of the first subpixel, a second data line on a right side of the second subpixel, a third data line on a left side of the third subpixel, and a fourth data line on the right side of the fourth subpixel. The first and second power lines and the sensing line are disposed on a layer different from the first to fourth data lines.
Abstract:
An organic light emitting display includes a display panel including sharing pixel groups each including at least one unit pixel, a gate driving circuit generating sensing signals for initializing the unit pixels, and a data driving circuit which generates an initialization voltage to be applied to the unit pixels and outputs the initialization voltage through a plurality of initialization voltage supply channels. When the sensing signals each having a pulse width of N horizontal periods (where N is a positive integer equal to or greater than 2) are shifted while overlapping each other by (N−1) horizontal period, N initialization voltage supply channels are assigned to a plurality of vertically adjacent sharing pixel groups. N sharing pixel groups, being driven to overlap each other in response to the sensing signals, among the vertically adjacent sharing pixel groups are connected to different initialization voltage supply channels.
Abstract:
A display device, includes a substrate; first to fourth subpixels sequentially arranged on the substrate; a first power line on a left side of the first subpixel and shared by the first and second subpixels; a sensing line between the second subpixel and the third subpixel and shared by the first to fourth subpixels; a second power line on a right side of the fourth subpixel and shared by the third and fourth subpixels; and a first data line on the left side of the first subpixel, a second data line on a right side of the second subpixel, a third data line on a left side of the third subpixel, and a fourth data line on the right side of the fourth subpixel. The first and second power lines and the sensing line are disposed on a layer different from the first to fourth data lines.
Abstract:
An organic light emitting display includes a display panel, on which a plurality of pixels each including an organic light emitting diode and a driving thin film transistor (TFT) controlling a current flowing in the organic light emitting diode are disposed, a timing controller configured to modulate input digital video data to compensate for changes in electric characteristic of the driving TFT, and a driving circuit unit configured to changes in electric characteristic of the driving TFT of each of specific pixels of the plurality of pixels in an image display period of each image frame and sequentially apply image display data to remaining pixels except the specific pixels along one direction in the image display period.
Abstract:
A display device includes a substrate, a light shielding layer on the substrate, first to fourth subpixels sequentially arranged on the substrate including the light shielding layer in a horizontal direction, a first power line disposed on one side of the first subpixel and shared by the first and second subpixels, a sensing line disposed between the second subpixel and the third subpixel and shared by the first to fourth subpixels, a second power line disposed on one side of the fourth subpixel and shared by the third and fourth subpixels, first and second data lines between the first and second subpixels and third and fourth data lines between the third and fourth subpixels; and a scan line extended on the first to fourth subpixels in the horizontal direction.
Abstract:
The present disclosure relates to an organic light emitting diode display having high luminescence. The present disclosure suggests an organic light emitting diode display comprising: a data line, a scan line and a driving current line defining a pixel area on a substrate; an anode electrode formed within the pixel area; an additional capacitance formed by overlapping expanded portions of the anode electrode with some portions of the driving current line; a bank defining a light emitting area in the anode electrode; an organic emission layer formed on the anode electrode; and a cathode electrode formed on the organic emission layer. The present disclosure suggests high luminescence organic light emitting diode display by including an additional capacitance for increasing the anode capacitance.
Abstract:
An organic light emitting display comprises: a driving TFT comprising a gate connected to a node B, a drain connected to an input terminal of high-potential cell driving voltage, and a source connected to the organic light emitting diode through a node C; a first switching TFT for switching the current path between a node A and the node B in response to a light emission control signal; a second switching TFT for initializing the node C in response to an initialization signal; a third switching TFT for initializing either the node A or the node B in response to the initialization signal; a fourth switching TFT for switching the current path between a data line and the node B in response to a scan signal; a compensation capacitor connected between the node B and the node C.