Abstract:
A display device includes a driving thin film transistor (TFT) having a two-gate overlap structure and a power line having a width extension structure that together allow for improved storage capacitance when compared to a display device without such structures.
Abstract:
An organic light emitting display device can include a plurality of color sub-pixels including first, second and third color sub-pixels, the first and second color sub-pixels disposed along a first direction, and the third color sub-pixel disposed adjacent to the first and second color sub-pixels along a second direction different from the first direction; and a plurality of driving sub-pixels configured to drive light emitting diodes of the color sub-pixels. Also, each of the driving sub-pixels can include a driving transistor and a switching unit, and each and every one of the driving sub-pixels overlapping with at least two color sub-pixels among the plurality of color sub-pixels. In addition, the first, second and third color sub-pixels correspond to a portion of four of the driving sub-pixels, and one of the driving sub-pixels overlaps with three or four corresponding color sub-pixels among the plurality of color sub-pixels.
Abstract:
A flexible display device includes a display panel including a plastic substrate where an organic light emitting diode and a thin film transistor are formed; a circuit portion applying a power signal and a data signal, which are supplied from an external portion, to the display panel; and a support member coupled to the plastic substrate, wherein the display panel and the circuit portion are bent around the support member.
Abstract:
Provided is an organic light-emitting diode (OLED) display device having sub-pixels with four colors. When a B1 sub-pixel that represents deep blue and a B2 sub-pixel that represents sky blue are formed, by using a high efficiency blue organic material to form the same emission material layers in both the B1 and B2 sub-pixels such that a microcavity effect is implemented only in the B2 sub-pixel and a sky blue peak is extracted from the high efficiency blue organic material of the B2 sub-pixel, the emission material layer of the B2 sub-pixel represents sky blue. Therefore, a process of depositing emission material layers is simplified, which leads to a short process time and a reduction of the cost of materials, resulting in improvement in process efficiency of the OLED display device.
Abstract:
An organic electroluminescent display device including first to fourth pixel regions each including red, green and blue sub-pixel regions, each of the first to fourth pixel regions being divided into first and second columns, the first column being divided into first and second rows. A red sub-pixel region and a green sub-pixel region are respectively arranged in the first and second rows, and a blue sub-pixel region is arranged in the second column. A red emitting layer is formed in the red sub-pixel region; a green emitting layer is formed in the green sub-pixel region; and a blue emitting layer is formed in the blue sub-pixel region.