Abstract:
A display device includes a display panel including a plurality of pixel regions and displaying a picture; and a light path controlling member located on a front surface of the display panel and transmitting the picture output from the display panel, wherein the light path controlling member includes a plurality of separation walls and a plurality of light path portions between the plurality of separation walls, and wherein a period of the light path portion is different from a period of the pixel region.
Abstract:
A method of compensating a display device includes: displaying a first display image of a calibration pattern; generating a first photograph image of the calibration pattern by capturing the first display image; generating a measurement representative position data corresponding to the calibration pattern by measuring the first photograph image; generating a third-order fitting representative position data by performing a two-dimensional third-order fitting; displaying a second display image of a full white display; generating a second photograph image of the full white display by capturing the second display image; generating a first crop image by performing a size adjustment based on the third-order fitting representative position data; calculating a luminance compensation value by comparing a measured luminance of the first crop image with a target luminance; and generating a compensated image data by applying the luminance compensation value to an image data.
Abstract:
A liquid crystal display device in an example includes a light guide plate that includes a light entering surface facing a light source; a reflecting plate below the light guide plate; an optical sheet on the light guide plate; a liquid crystal panel on the optical sheet; and a pattern adhesive layer that attaches at least one of the reflecting plate and the optical sheet to the light guide plate, wherein the pattern adhesive layer includes honeycomb shaped unit patterns that each include two first separation walls facing each other in a first direction perpendicular to the light entering surface, and second separation walls other than the first separation walls and each have an air cell defined therein, and wherein the unit patterns are arranged in the first direction and in a second direction perpendicular to the first direction.
Abstract:
A backlight unit and a liquid crystal display device having the same which may facilitate control of output light through a light guide plate, improve light concentration effect, and reduce moire. The backlight unit includes light sources generating light, a light guide plate guiding light through an incidence surface opposite the light sources, emitting the light through an emission surface, and having lower patterns of a prism shape formed on the lower surface of the light guide plate opposite the emission surface by inclined surfaces and sub-inclined surfaces, and at least one optical sheet stacked on the emission surface.
Abstract:
A method of compensating a display device includes: displaying a first display image of a calibration pattern; generating a first photograph image of the calibration pattern by capturing the first display image; generating a measurement representative position data corresponding to the calibration pattern by measuring the first photograph image; generating a third-order fitting representative position data by performing a two-dimensional third-order fitting; displaying a second display image of a full white display; generating a second photograph image of the full white display by capturing the second display image; generating a first crop image by performing a size adjustment based on the third-order fitting representative position data; calculating a luminance compensation value by comparing a measured luminance of the first crop image with a target luminance; and generating a compensated image data by applying the luminance compensation value to an image data.
Abstract:
A display device includes: a substrate having red, first green, second green and blue subpixels; a driving thin film transistor in each of the red, first green, second green and blue subpixels on the substrate; and a light emitting diode connected to the driving thin film transistor and in each of the red, first green, second green and blue subpixels, wherein the light emitting diodes of the red, first green, second green and blue subpixels includes red, first green, second green and blue emission areas, respectively, and wherein the first green emission area has a cross shape.
Abstract:
A backlight unit and a liquid crystal display device having the same which may facilitate control of output light through a light guide plate, improve light concentration effect, and reduce moire. The backlight unit includes light sources generating light, a light guide plate guiding light through an incidence surface opposite the light sources, emitting the light through an emission surface, and having lower patterns of a prism shape formed on the lower surface of the light guide plate opposite the emission surface by inclined surfaces and sub-inclined surfaces, and at least one optical sheet stacked on the emission surface.
Abstract:
A method of compensating a display device includes: displaying a first display image of a calibration pattern; generating a first photograph image of the calibration pattern by capturing the first display image; generating a measurement representative position data corresponding to the calibration pattern by measuring the first photograph image; generating a third-order fitting representative position data by performing a two-dimensional third-order fitting; displaying a second display image of a full white display; generating a second photograph image of the full white display by capturing the second display image; generating a first crop image by performing a size adjustment based on the third-order fitting representative position data; calculating a luminance compensation value by comparing a measured luminance of the first crop image with a target luminance; and generating a compensated image data by applying the luminance compensation value to an image data.
Abstract:
A display device includes: a substrate having red, first green, second green and blue subpixels; a driving thin film transistor in each of the red, first green, second green and blue subpixels on the substrate; and a light emitting diode connected to the driving thin film transistor and in each of the red, first green, second green and blue subpixels, wherein the light emitting diodes of the red, first green, second green and blue subpixels includes red, first green, second green and blue emission areas, respectively, and wherein the first green emission area has a cross shape.
Abstract:
A display device includes: a substrate having red, first green, second green and blue subpixels; a driving thin film transistor in each of the red, first green, second green and blue subpixels on the substrate; and a light emitting diode connected to the driving thin film transistor and in each of the red, first green, second green and blue subpixels, wherein the light emitting diodes of the red, first green, second green and blue subpixels includes red, first green, second green and blue emission areas, respectively, and wherein the first green emission area has a cross shape.