Abstract:
A distributor and an evaporator having the same are provided. The distributor may include a first refrigerant distributor provided with a plurality of through holes formed in a first direction, and a plurality of refrigerant dropping devices that guide refrigerant, dropped from the first refrigerant distributor through the plurality of through holes, to a heat transfer pipe, and having a sectional area of flow surfaces thereof that decreases in a flow direction of the refrigerant.
Abstract:
A distributor and an evaporator having the same are provided. The distributor may include a first refrigerant distributor provided with a plurality of through holes formed in a first direction, and a plurality of refrigerant dropping devices that guide refrigerant, dropped from the first refrigerant distributor through the plurality of through holes, to a heat transfer pipe, and having a sectional area of flow surfaces thereof that decreases in a flow direction of the refrigerant.
Abstract:
The present disclosure relates to a compressor including: a motor having a rotating shaft; a first impeller housing forming a first inlet, through which a first refrigerant flows, and having a chamber into which a second refrigerant flows; a first impeller coupled to one end of the rotating shaft, and rotatably received in the first impeller housing; a diffuser spaced apart from an inside of the first impeller housing, and forming a first outlet; a second impeller housing having a second inlet formed therein; a second impeller coupled to the other end of the rotating shaft, and rotatably received in the second impeller housing; a volute case in which a volute is formed; and a motor housing having a connecting passage formed therein and connecting the first outlet and the second inlet.
Abstract:
An evaporator comprises: a housing with a refrigerant inlet and a refrigerant outlet; heat transfer tubes that are contained in the housing, in which chilled water for heat exchange with refrigerant inside the housing flows; at least one distribution tray that is placed apart from the heat transfer tubes and has a plurality of holes for distributing refrigerant over the underlying heat transfer tubes; a vapor-liquid separator that is placed apart from the bottom of the distribution tray and separates an introduced refrigerant into a vapor refrigerant and a liquid refrigerant; and a pair of support frames that are fixed to either side of the width direction of the housing, wherein the vapor-liquid separator comprises: a chamber that has an inlet port communicating with the refrigerant inlet, a vapor refrigerant exit communicating with the refrigerant outlet, and a plurality of holes formed in the bottom to distribute the liquid refrigerant to the distribution tray; and a plurality of side arms that are formed on either side of the chamber and arranged in the length direction of the chamber and supported by the support frames. Through the present disclosure, it is possible to keep the vapor-liquid separator horizontal and stable and achieve stable heat exchange performance.
Abstract:
An evaporator comprises: a housing with a refrigerant inlet and a refrigerant outlet; heat transfer tubes that are contained in the housing, in which chilled water for heat exchange with refrigerant inside the housing flows; at least one distribution tray that is placed apart from the heat transfer tubes and has a plurality of holes for distributing refrigerant over the underlying heat transfer tubes; and a tube support with a plurality of holes for passing the heat transfer tubes through, that is placed inside the housing and supports the distribution tray. Through the present disclosure, it is possible to achieve stable heat exchange performance by placing the distribution tray horizontal and stable.
Abstract:
The present disclosure relates to a compressor including: a motor having a rotating shaft; a first impeller housing forming a first inlet, through which a first refrigerant flows, and having a chamber into which a second refrigerant flows; a first impeller coupled to one end of the rotating shaft, and rotatably received in the first impeller housing; a diffuser spaced apart from an inside of the first impeller housing, and forming a first outlet; a second impeller housing having a second inlet formed therein; a second impeller coupled to the other end of the rotating shaft, and rotatably received in the second impeller housing; a volute case in which a volute is formed; and a motor housing having a connecting passage formed therein and connecting the first outlet and the second inlet.
Abstract:
A chiller system includes a compressor that compress refrigerant, a condenser that exchanges heat between the refrigerant and a cooling water discharged from the compressor, and a flow adjusting device that is provided to a refrigerant outlet side of the condenser and adjusts refrigerant amount in the inside of the condenser, the flow adjusting device includes, a main body portion that is communicated with a tubing of the outlet side of the condenser, a refrigerant supply tube that extends to the main body portion from the condenser and supplies the refrigerant in the inside of the condenser to the inside of the main body portion, and a flow hole that is formed on the main body portion and is selectively opened and closed according to refrigerant pressure which is input through the refrigerant supply tube.
Abstract:
A turbo compressor includes a housing with a refrigerant suction hole, through which a refrigerant is introduced, at a front portion thereof, and a motor case defining an accommodation space. The accommodation space includes a rotation shaft extending in a front-rear direction and a motor that is configured to rotate the rotation shaft. A first impeller is coupled to one end of the rotation shaft and a second impeller is coupled to the other end of the rotation shaft. The first impeller is configured to primarily compress the refrigerant introduced into the refrigerant suction hole. A connection passage, that surrounds the motor case extends backward from an outlet of the first impeller. The second impeller is configured to secondarily compress the refrigerant introduced through the connection passage.
Abstract:
An evaporator including a housing with a refrigerant inlet and a refrigerant outlet; heat transfer tubes contained in the housing, in which chilled water for heat exchange with refrigerant inside of the housing flows; at least one distribution tray placed apart from the heat transfer tubes and having a plurality of holes for distributing refrigerant over the underlying heat transfer tubes; a vapor-liquid separator that is placed above the distribution tray and separates an introduced mixed refrigerant into vapor refrigerant and liquid refrigerant and distributes the liquid refrigerant to the distribution tray; and at least one tube support with a plurality of holes for passing the heat transfer tubes through, that is placed inside of the housing and supports the distribution tray.
Abstract:
The present disclosure relates to a compressor including: a first impeller suctioning a refrigerant in an axial direction and compressing the refrigerant in a direction forming an acute angle with the axial direction; a second impeller suctioning the refrigerant, compressed by the first impeller, in the axial direction and compressing the refrigerant in a centrifugal direction; a motor rotating the first impeller and the second impeller; and a rotating shaft coupled with the first impeller, the second impeller, and the motor, wherein the first impeller is coupled to one end in the axial direction of the rotating shaft, and the second impeller is coupled to the other end in the axial direction of the rotating shaft; and the first impeller and the second impeller suction the refrigerant in a same direction.