Abstract:
The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.
Abstract:
An R-TM-B hot-pressed and deformed magnet (here, R represents a rare earth metal selected from the group consisting of Nd, Dy, Pr, Tb, Ho, Sm, Sc, Y, La, Ce, Pm, Eu, Gd, Er, Tm, Yb, Lu, and a combination thereof, and TM represents a transition metal) of the present invention comprises flat type anisotropic magnetized crystal grains and a nonmagnetic alloy distributed in a boundary surface between the crystal grains, and thus the magnet of the present invention has an excellent magnetic shielding effect as compared with an existing permanent magnet since the crystal gains can be completely enclosed in the nonmagnetic alloy, so that a hot-pressed and deformed magnet with enhanced coercive force can be manufactured through a more economical process.
Abstract:
A colorless composite material according to an embodiment includes glass fibers, and inorganic-organic hybrid resin having inorganic bonds and organic bonds, wherein the inorganic bonds are M-O-M bonds and M denotes a metallic element, wherein the metallic element is one of Ti, Zr and Al.
Abstract:
The present invention relates to a method of producing a large amount of hard-soft magnetic nanocomposite powder in short time. The hard-soft magnetic nanocomposite powder of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite monophased material.
Abstract:
A ferrite magnet with salt includes 40 to 99.9 weight % of ferrite and 0.1 to 60 weight % of salt, wherein the salt has a melting point lower than a synthetic temperature of the ferrite, and the salt is melted to form a matrix between the ferrite particles, and a manufacturing thereof. The ferrite magnet with salt has advantages in terms of process conditions due to fast synthesis reaction at low temperatures compared to typical magnets, easily obtaining nano-sized particles having high crystallinity, preventing cohesion between particles and particle growth by molten salt, allowing sintering at temperatures lower than typical during the molding and sintering processes for producing a ferrite magnet with salt due to synthesized ferrite magnetic powder with salt thus preventing the deterioration of magnetic characteristics due to particle growth, and allowing alignment in the direction of magnetization easy axis to obtain higher magnetic characteristics.
Abstract:
The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.