Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
Provided is a thermoelectric module, including: a first substrate and a second substrate disposed to face each other; at least one unit thermoelectric element composed of a pair of semiconductor elements including a P-type semiconductor element and an N-type semiconductor element disposed in an internal area between the first substrate and the second substrate disposed to face each other and having respective ends electrically connected to each other via electrodes; and at least two kinds of sealing parts having different thermal conductivities and coated on at least one area of the internal area between the first substrate and the second substrate disposed to face each other.
Abstract:
A thermoelectric module according to one embodiment of the present invention comprises: a heat exchange unit; and a thermoelectric element disposed on the heat exchange unit, wherein the heat exchange unit includes a case for accommodating a material for heat exchange and a cover covering the case, the thermoelectric element is disposed on the cover, and the thermal conductivity of the cover is higher than the thermal conductivity of the case.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
A thermoelectric element according to one embodiment of the present disclosure includes a lower metal substrate, a lower insulating layer disposed on the lower metal substrate, a plurality of lower electrodes disposed on the lower insulating layer to be spaced apart from each other, a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs disposed on the plurality of lower electrodes, a plurality of upper electrodes disposed on the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs to be spaced apart from each other, an upper insulating layer disposed on the plurality of upper electrodes, and an upper metal substrate disposed on the upper insulating layer, wherein the lower insulating layer includes a first insulating layer disposed on the lower metal substrate and a plurality of second insulating layers disposed on the first insulating layer to be spaced apart from each other.
Abstract:
An embodiment of the present invention relates to a vehicle lamp structure capable of removing condensation from a lens part, in which a heat source is supplied to a heat absorbing part of a thermoelectric module to increase a temperature of a cooling region, together with a temperature of a heat generation part (a heat generation region) of the thermoelectric module, thereby improving limited heat conversion efficiency of the thermoelectric module, and furthermore, a hot current of air and a high-temperature heat source are supplied to a lens part of a head lamp, thereby maximizing dehumidification efficiency in the lamp.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.