Abstract:
A method for fabricating an array substrate of a liquid crystal display device includes forming a gate line and a gate electrode connected to the gate line, forming a gate insulating layer, an amorphous silicon layer, a doped amorphous silicon layer and a metal layer on the gate line and the gate electrode, forming a data line, a source electrode, a drain electrode, an ohmic contact layer and an active layer by patterning the metal layer, the doped amorphous silicon layer and the amorphous silicon layer with a single photolithographic masking step, forming a passivation layer covering the data line, and the source and drain electrodes, the passivation layer having a contact hole exposing a portion of the drain electrode, and forming a pixel electrode connected to the drain electrode through the contact hole.
Abstract:
An organic electroluminescent device includes first and second substrates facing and spaced apart from each other; a gate line on an inner surface of the first substrate; a semiconductor layer over the gate line, the semiconductor layer overlying a surface of the first substrate; a data line crossing the gate line; a data ohmic contact layer under the data line, the data ohmic contact layer having the same shape as the data line; a power line parallel to, or substantially parallel to, and spaced apart from the data line, the power line including the same material as the gate line; a switching thin film transistor connected to the gate line and the data line, the switching thin film transistor using the semiconductor layer as a switching active layer; a driving thin film transistor connected to the switching thin film transistor and the power line, the driving thin film transistor using the semiconductor layer as a driving active layer; a connection pattern connected to the driving thin film transistor, the connection pattern including a conductive polymeric material; a first electrode on an inner surface of the second substrate; an organic electroluminescent layer on the first electrode; and a second electrode on the organic electroluminescent layer, the second electrode contacting the connection pattern.
Abstract:
An organic electroluminescent device includes first and second substrates spaced apart from and facing each other, an organic electroluminescent diode on an inner surface of the second substrate, a gate line formed on an inner surface of the first substrate in a first direction, a data line formed in a second direction crossing the first direction, a power supply line spaced apart from the data line and formed in the second direction, the power supply line made of the same material as the gate line, the power supply line having a power supply link line near a crossing portion of the gate line and the power supply line, a switching thin film transistor at a crossing portion of the gate and data lines, the switching thin film transistor including a first semiconductor layer made of amorphous silicon, a driving thin film transistor at a crossing portion of the switching thin film transistor and the power supply line, the driving thin film transistor including a second semiconductor layer made of amorphous silicon, a connecting electrode connected to the driving thin film transistor and made of the same material as the data line, and an electrical connecting pattern corresponding to the connecting electrode and for electrically connecting the connecting electrode to the organic electroluminescent diode, wherein the switching thin film transistor and the driving thin film transistor further include first and second gate insulating layers, respectively, the first gate insulating layer having the same shape as the first semiconductor layer, the second gate insulating layer having the same shape as the second semiconductor layer.