Abstract:
Systems and methods for modeling petroleum reservoir properties using a gridless reservoir simulation model are provided. Data relating to geological properties of a reservoir formation is analyzed. A tiered hierarchy of geological elements within the reservoir formation is generated at different geological scales, based on the analysis. The geological elements at each of the different geological scales in the tiered hierarchy are categorized. Spatial boundaries between the categorized geological elements are defined for each of the geological scales in the tiered hierarchy. A scalable and updateable gridless model of the reservoir formation is generated, based on the spatial boundaries defined for at least one of the geological scales in the tiered hierarchy.
Abstract:
A method for creating a seamless scalable geological model may comprise identifying one or more geological scales, establishing a geological tied system, identifying one or more graphical resolution levels for each of the one or more geological scales, constructing the seamless scalable geological model, and producing a post-process model. A system for creating a seamless scalable geological model may comprise an information handling system, which may comprise a random access memory, a graphics module, a main memory, a secondary memory, and one or more processors configured to run a seamless scalable geological model software.
Abstract:
Fracture networks are simulated using a large triangle mesh size for large fractures and a smaller triangle mesh size for small fractures. Input data defining parameters of one or more fractures are input, the fractures being comprised of a triangle mesh. A first triangle mesh size for the fractures is determined based upon the input data. A second smaller triangle mesh size is then determined based upon the input data. The fracture network is then simulated using the large and small triangle mesh sizes.
Abstract:
Fracture networks are simulated using a large triangle mesh size for large fractures and a smaller triangle mesh size for small fractures. Input data defining parameters of one or more fractures are input, the fractures being comprised of a triangle mesh. A first triangle mesh size for the fractures is determined based upon the input data. A second smaller triangle mesh size is then determined based upon the input data. The fracture network is then simulated using the large and small triangle mesh sizes.
Abstract:
A system and method for performing classification and regression tree flow simulations for reservoir. A partial flow simulation is performed. Dynamic properties associated with the partial flow simulation are stored for each time step. CART is utilized to predict changes in the dynamic properties utilizing stored dynamic properties determined by the partial flow simulation.
Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for performing gridless simulation of a fluvio-deltaic environment. For example, one disclosed embodiment includes a system that includes at least one processor, and at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations that include generating a set of channel centerlines corresponding to a set of channels that are indicative of flow units in a fluvio-deltaic environment; and generating channel widths for each of the channel centerlines. In one embodiment, the operations for generating the set of channel centerlines of the reservoir include selecting a seed point for each channel, assigning each seed point a direction of propagation, and iteratively generating each channel.
Abstract:
Target objects are simulated using different triangle mesh sizes to improve processing performance. To perform the simulation, a seed point for the target object within a constraint volume is determined, the seed point representing a vertex of a first triangle forming part of the target object. One or more hexagonal orbits of triangles adjacent the first triangle are propagated, whereby the hexagonal orbits of triangles form the target object. The size of each triangle is determined based upon dimensions of the target object, and the target object is generated.
Abstract:
A system and method for performing classification and regression tree flow simulations for reservoir. A partial flow simulation is performed. Dynamic properties associated with the partial flow simulation are stored for each time step. CART is utilized to predict changes in the dynamic properties utilizing stored dynamic properties determined by the partial flow simulation.
Abstract:
Target objects are simulated using different triangle mesh sizes to improve processing performance. To perform the simulation, a seed point for the target object within a constraint volume is determined, the seed point representing a vertex of a first triangle forming part of the target object. One or more hexagonal orbits of triangles adjacent the first triangle are propagated, whereby the hexagonal orbits of triangles form the target object. The size of each triangle is determined based upon dimensions of the target object, and the target object is generated.
Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for providing a geostatistical procedure for simulation of the 3D geometry of a natural fracture network conditioned by well bore observations.