摘要:
This invention relates to a method and device for case-based decision support. It proposes that a case-based decision support system is trained on inputs from several radiologists in order to have a “baseline” system, and then the system provides an option to a radiologist to refine the baseline system based on his/her inputs which either refine weights of features for similarity distance computation directly or provide new similarity ground truth clusters. By enabling modifying the similarity distance computation based on user inputs, this invention adapts similarity ground truth to different users with different experience and/or different opinions.
摘要:
This invention relates to a method and device for case-based decision support. It proposes that a case-based decision support system is trained on inputs from several radiologists in order to have a “baseline” system, and then the system provides an option to a radiologist to refine the baseline system based on his/her inputs which either refine weights of features for similarity distance computation directly or provide new similarity ground truth clusters. By enabling modifying the similarity distance computation based on user inputs, this invention adapts similarity ground truth to different users with different experience and/or different opinions.
摘要:
The invention relates to search for cases in a database. According to the proposed method and apparatus, similarity matching is performed between an input case and a set of cases in an initial search to receive similar cases by using a given matching criterion. Then statistics on image and/or non-image-based features associated with the similar cases are calculated and presented to the user with the similar cases. In a search refinement the similar cases are refined by additional features that are determined by the user based on the statistics. The search refinement can be iterative depending on the user's need.
摘要:
Methods are herein provided for decision support in diagnosis of a disease in a subject, and for extracting features from a multi-slice data set. Systems for computer-aided diagnosis are provided. The systems take as input a plurality of medical data and produces as output a diagnosis based upon this data. The inputs may consist of a combination of image data and clinical data. Diagnosis is performed through feature selection and the use of one or more classifier algorithms.
摘要:
Methods are herein provided for decision support in diagnosis of a disease in a subject, and for extracting features from a multi-slice data set. Systems for computer-aided diagnosis are provided. The systems take as input a plurality of medical data and produces as output a diagnosis based upon this data. The inputs may consist of a combination of image data and clinical data. Diagnosis is performed through feature selection and the use of one or more classifier algorithms.
摘要:
The invention relates to search for cases in a database. According to the proposed method and apparatus, similarity matching is performed between an input case and a set of cases in an initial search to receive similar cases by—using a given matching criterion. Then statistics on image and non-image-based features associated with the similar cases are calculated and presented to the user with the similar cases. In a search refinement the similar cases are refined by additional features that are determined by the user based on the statistics. The search refinement can be iterative depending on the user's need.
摘要:
A system and method for cross-modality case-based computer-aided diagnosis comprises storing a plurality of cases, each case including at least one image of one of a plurality of modalities and non-image information, mapping a feature relationship between a feature from images of a first modality to a feature from images of a second modality, and storing the relationship.
摘要:
Optimizing example-based computer-aided diagnosis (CADx) is accomplished by clustering volumes-of-interest (VOIs) (116) in a database (120) into respective clusters according to subjective assessment of similarity (S220). An optimal set of volume-of-interest (VOI) features is then selected for fetching examples such that objective assessment of similarity, based on the selected features, clusters, in a feature space, the database VOIs so as to conform to the subjectively-based clustering (S230). The fetched examples are displayed alongside the VOI to be diagnosed for comparison by the clinician. Preferably, the displayed example is user-selectable for further display of prognosis, therapy information, follow up information, current status, and/or clinical information retrieved from an electronic medical record (S260).
摘要:
A method for computer aided detection (CAD) and classification of regions of interest detected within HRCT medical image data includes post-CAD machine learning techniques applied to maximize specificity and sensitivity of identification of a region/volume as being a nodule or non-nodule. The regions are identified by a CAD process, and automatically segmented. A feature pool is identified and extracted from each segmented region, and processed by genetic algorithm to identify an optimal feature subset, which subset is used to train the support vector machine to classify candidate region/volumes found within non-training data.
摘要:
A system and method for cross-modality case-based computer-aided diagnosis comprises storing a plurality of cases, each case including at least one image of one of a plurality of modalities and non-image information, mapping a feature relationship between a feature from images of a first modality to a feature from images of a second modality, and storing the relationship.