摘要:
Single phase microemulsions (SPMEs) and in situ-formed microemulsions may be used to clean up and remove non-polar materials from reservoir production zones of oil and gas wells. This clean up occurs by solubilization of the non-polar material into the microemulsion when the treatment fluid contacts the non-polar material. An in situ microemulsion may be formed when one or more surfactant and a polar phase (e.g. water or brine), and eventually some small amount of organic phase, contacts the reservoir formation and solubilizes the non-polar material encountered in the porous media. The microemulsions are effective for removing the formation damage caused by non-polar materials which include, but are not necessarily limited to oil-based mud, synthetic-based mud, paraffins, asphaltenes, emulsions, slugs, and combinations thereof.
摘要:
Single phase microemulsions (SPMEs) and in situ-formed microemulsions may be used to clean up and remove non-polar materials from reservoir production zones of oil and gas wells. This clean up occurs by solubilization of the non-polar material into the microemulsion when the treatment fluid contacts the non-polar material. An in situ microemulsion may be formed when one or more surfactant and a polar phase (e.g. water or brine), and eventually some small amount of organic phase, contacts the reservoir formation and solubilizes the non-polar material encountered in the porous media. The microemulsions are effective for removing the formation damage caused by non-polar materials which include, but are not necessarily limited to oil-based mud, synthetic-based mud, paraffins, asphaltenes, emulsions, slugs, and combinations thereof.
摘要:
In aspects, the disclosure provides a method for cementing a borehole that includes selecting a location in the borehole for cementing. The method further includes providing a cement slurry comprising a cement and shape memory members having a first shape, the shape memory members configured to expand from the first shape to a second shape upon application of heat to the shape memory members, placing the cement slurry in the selected space and heating the shape memory members in the selected space to attain the second shape.
摘要:
Changing concentrations of brine in a gravel pack carrier fluid gelled with a viscoelastic surfactant (VES) increases the fluid efficiency for gravel packing long interval wells, such as wellbore producing interval greater than about 100 feet (about 30 m). VES-gelled fluids used as gravel packing fluids herein also include surfactants, fluid loss control agents, internal breakers and brine in addition to the grave. The viscoelasticity of fluid system can suspend and deliver high concentration of the gravels while reducing carrier fluid volume.
摘要:
The migration of coal fines within a bed is reduced, inhibited or constrained by contacting the fines with nanoparticles, such as magnesium oxide crystals having an average particle size of about 30 nm. These nanoparticles may coat a proppant during the fracturing of a subterranean formation to produce methane from a coal bed therein. The nanoparticles may also treat a proppant pack in a fractured coal bed. The nanoparticles cause the coal fines to thus bind to or associate with the proppants. Thus, most of the coal fines entering fractures away from the near-wellbore region will be restrained or controlled near their origin or source and the production of methane at a desired level will be maintained much longer than a similar situation than where the nanoparticles are not used.
摘要:
An embodiment provides a device that includes a shape memory member having a sealed outer surface and a permeable inner mass and a selected fluid placed and sealed within the inner mass at a first temperature. The selected fluid is released from the inner mass when the shape memory member is heated to a second temperature.
摘要:
Acid-soluble cupric acetate may used in conjunction with potassium iodide to generate cuprous iodide (CuI) as an acid corrosion inhibition aid. A suitable corrosion inhibitor together with the aid protects steel surfaces in an acid environment, for instance, while acid fracturing or matrix acidizing subterranean formations. Cupric acetate monohydrate may be used with an alkali metal iodide salt such as potassium iodide or sodium iodide to generate cuprous iodide in situ in aqueous acid solutions. Use of cupric acetate provides a somewhat delayed reaction rate with potassium iodide to generate the desired product, cuprous iodide, which has very low solubility in acid systems. The method includes delayed and in situ production of cuprous iodide for enhancing performance of commercially available corrosion inhibitors, commonly referred to as intensifying the effect of the corrosion inhibitor (corrosion inhibitor intensifier or simply an intensifier).
摘要:
Using a complex emulsion for treating a subterranean formation, such as to dissolve minerals therein (e.g. carbonates, scales, and/or filter cake) to improve permeability, substantially improves post treatment fluid clean-up for improved hydrocarbon production. The complex emulsion is made by mixing an acid aqueous phase with an oil external microemulsion to give an initial product, where the acid aqueous phase is an external phase and the microemulsion is an internal phase. Then the initial product is mixed with a second oil (e.g. xylene, diesel, toluene, kerosene, other aromatics, refined hydrocarbons and the like) containing an emulsifier to make a complex emulsion.
摘要:
The migration of coal fines within a bed is reduced, inhibited or constrained by contacting the fines with nanoparticles, such as magnesium oxide crystals having an average particle size of about 30 nm. These nanoparticles may coat a proppant during the fracturing of a subterranean formation to produce methane from a coal bed therein. The nanoparticles may also treat a proppant pack in a fractured coal bed. The nanoparticles cause the coal fines to thus bind to or associate with the proppants. Thus, most of the coal fines entering fractures away from the near-wellbore region will be restrained or controlled near their origin or source and the production of methane at a desired level will be maintained much longer than a similar situation than where the nanoparticles are not used.
摘要:
Viscoelastic surfactant (VES) gelled aqueous fluids containing water, a VES, an internal breaker, a VES stabilizer, a fluid loss control agent and a viscosity enhancer are useful as treating fluids and particularly as fracturing fluids for subterranean formations. These VES-based fluids have faster and more complete clean-up than polymer-based fracturing fluids. The use of an internal breaker permits ready removal of the unique VES micelle based pseudo-filter cake with several advantages including reducing the typical VES loading and total fluid volume since more VES fluid stays within the fracture, generating a more optimum fracture geometry for enhanced reservoir productivity, and treating reservoirs with permeability above the present VES limit of approximately 400 md to at least 2000 md.