Abstract:
A system and a method for determining an association of one or more biological features with a medical condition provides empirical results and simulations confirming that the involvement of both L1/2-regularized logistic regression and L2-regularized logistic regression in the regression model is highly competitive against usual approaches like Lasso, L1/2, SCAD-L2, and Elastic net in analyzing high dimensional and low sample sizes data.
Abstract:
A system and a method for determining an association of at least one biological feature with a medical condition, in particularly, but not exclusively, a system and a method of determining an association of at least one biological feature in form of a gene expression with cancer or a subtype of cancer that can include the generation of a simplified protein-protein interaction network based on processed biological data. The system and respective method is especially suitable for analysis of high dimensional and low sample size biological datasets such as in cancer research.
Abstract:
A system and a method for determining an association of at least one biological feature with a medical condition, in particularly, but not exclusively, a system and a method of determining an association of at least one biological feature in form of a gene expression with cancer or a subtype of cancer that can include the generation of a simplified protein-protein interaction network based on processed biological data. The system and respective method is especially suitable for analysis of high dimensional and low sample size biological datasets such as in cancer research.
Abstract:
A method and a system for determining an association of at least one biological feature with a medical condition utilizes the novel L1/2 penalized network-constraint regression model to achieve an improved biological analysis, in particular by solving high-dimensional problems. The method and the system of the present invention attain high accuracy and preciseness.
Abstract:
A system and a method for determining an estimated survival time of a subject with a medical condition utilizes the novel RS-AFT model and is especially suitable and highly advantageous for survival analysis based on microarray gene expression data because of its exceptional performance of gene selection, stable noise resistance, and high prediction precision.
Abstract:
A method and a system for determining an association of at least one biological feature with a medical condition utilizes the novel L1/2 penalized network-constraint regression model to achieve an improved biological analysis, in particular by solving high-dimensional problems. The method and the system of the present invention attain high accuracy and preciseness.
Abstract:
A system and a method for determining an association of one or more biological features with a medical condition provides empirical results and simulations confirming that the involvement of both L1/2-regularized logistic regression and L2-regularized logistic regression in the regression model is highly competitive against usual approaches like Lasso, L1/2, SCAD-L2, and Elastic net in analyzing high dimensional and low sample sizes data.
Abstract:
A super-resolution method for generating a high-resolution (HR) image from a low-resolution (LR) blurred image is provided. The method is based on a transform-invariant directional total variation (TI-DTV) approach with Schattenp=1/2 (S1/2-norm) and L1/2-norm penalties. The S1/2-norm and the L1/2-norm are used to induce a lower-rank component and a sparse component of the LR blurred image so as to determine an affine transform to be adopted in the TI-DTV approach. In particular, the affine transform is determined such that a weighted sum of the S1/2-norm and the L1/2-norm is substantially minimized. Based on the alternating direction method of multipliers (ADMM), an iterative algorithm is developed to determine the affine transform. The determined affine transform is used to transform a candidate HR image to a transformed image used in computing a directional total variation (DTV), which is involved in determining the HR image.
Abstract:
A super-resolution method for generating a high-resolution (HR) image from a low-resolution (LR) blurred image is provided. The method is based on a transform-invariant directional total variation (TI-DTV) approach with Schattenp=1/2 (S1/2-norm) and L1/2-norm penalties. The S1/2-norm and the L1/2-norm are used to induce a lower-rank component and a sparse component of the LR blurred image so as to determine an affine transform to be adopted in the TI-DTV approach. In particular, the affine transform is determined such that a weighted sum of the S1/2-norm and the L1/2-norm is substantially minimized. Based on the alternating direction method of multipliers (ADMM), an iterative algorithm is developed to determine the affine transform. The determined affine transform is used to transform a candidate HR image to a transformed image used in computing a directional total variation (DTV), which is involved in determining the HR image.