摘要:
A method and system for providing an energy assisted magnetic recording (EAMR) transducer coupled with a laser are described. The EAMR transducer has an air-bearing surface (ABS) residing in proximity to a media during use. The method and system include providing waveguide(s), a near-field transducer (NFT), write pole(s), and coil(s). The waveguide(s) direct energy from the laser toward the ABS. The NFT is coupled with the waveguide and focuses the energy onto the media. The write pole(s) include a stitch for providing a magnetic field to the media and a yoke coupled to the stitch. The stitch includes an ABS-facing surface, a sloped surface, and an NFT-facing surface between the ABS-facing and sloped surfaces. The NFT-facing surface is substantially parallel to the NFT. The sloped surface is sloped at least twenty-five and not more than sixty-five degrees with respect to the NFT-facing surface. The coil(s) energize the write pole(s).
摘要:
An energy assisted magnetic recording (EAMR) transducer coupled with a laser is described. The EAMR transducer has an air-bearing surface (ABS) residing near a media during use. The EAMR transducer includes optical and writer modules. The optical module includes a waveguide and a near field transducer (NFT). The waveguide directs the energy from the laser toward the ABS. The NFT focuses the energy onto the media. The optical and writer modules are physically separate such that no portion of the waveguide is interleaved with a magnetic portion of the writer module. The writer module includes a write pole and coil(s). The write pole includes a pole-tip portion for providing a magnetic field to the media and a yoke. The pole-tip portion has an ABS-facing surface, a sloped surface, and a NFT-facing surface therebetween. The sloped surface is at least twenty-five and not more than sixty-five degrees from the NFT-facing surface.
摘要:
The method and system provide a perpendicular magnetic recording (PMR) head having an air bearing surface (ABS). The PMR head includes first and second poles each having front and back gap regions, a first nonmagnetic insertion layer between the back gap regions, a magnetic pole layer with a front terminating at the ABS, a write gap, shield(s), a second nonmagnetic insertion layer between the second pole back gap region and the shield(s), and coil(s) between the shield(s) and the first pole. The magnetic pole layer terminates between the ABS and the second pole back gap region and has pole angle(s) of at least thirty and not more than fifty degrees. At least part of the magnetic pole layer resides on the second pole. Part of the shield(s) are adjacent to the write gap. Another part of the shield(s) is coupled with the second pole back gap region.
摘要:
A method and system for providing a magnetic transducer having an air-bearing surface (ABS) are described. The magnetic transducer includes a perpendicular magnetic recording (PMR) pole, an additional pole, a stitch, a shield, a write gap between the PMR pole and a portion of the shield, and at least one coil that energizes at least the additional pole. The PMR pole has a first front portion proximate to the ABS, while the additional pole is recessed from the ABS. The stitch resides between the PMR pole and the additional pole and has a stitch front portion between the front portion of the PMR pole and the additional pole. At least a portion of the write gap resides on the front portion of the PMR pole. At least a portion of the additional pole resides between the PMR pole and the shield.
摘要:
A method of making a perpendicular magnetic recording head for use in a data storage device includes forming a first pole layer, a second pole layer, a third pole layer, and a shield layer of a write section. The first pole layer, second pole layer, third pole layer, and shield layer are formed without using a chemical mechanical polishing process. The method next includes concurrently trimming the shield layer and a write pole that is defined by the third pole layer to a predetermined track width. In the trimming step, the shield layer is used as a mask for the write pole.
摘要:
A perpendicular recording head is provided having a bottom pole, a writer pole disposed above the bottom pole, and a top shield disposed above the writer pole. The bottom pole and the top shield are both magnetically coupled to the writer pole. The writer pole includes a concave facing surface that faces the top shield. The top shield can include a convex surface that faces the writer pole. The top shield can also include a pedestal that protrudes towards the writer pole.
摘要:
A magnetic head for writing information on a relatively-moving medium has a pair of substantially flat soft magnetic pole layers separated by a pair of coil layers. A soft magnetic pedestal adjoins the leading pole layer adjacent to a medium-facing surface and is spaced from the second pole layer by a nanoscale nonferromagnetic gap, the pedestal having a layer of high magnetic saturation material that defines a throat height and extends beyond the throat height. A second high magnetic saturation material adjoins the trailing pole layer and either terminates at the throat height to form a second pedestal or extends to reach a magnetic backgap structure that magnetically couples the pole layers. The MR sensor can be located closer than the write transducer to the trailing end of the head to reduce separation between the read transducer and the write transducer.
摘要:
A magnetic head is disclosed that has first and second substantially flat soft magnetic pole layers that are magnetically coupled together in a backgap region that is removed from the medium-facing surface; a soft magnetic pedestal having a leading edge and a trailing edge, the trailing edge adjoining the second pole layer adjacent to the medium-facing surface, the leading edge defining a throat area that is spaced from the first pole layer by a submicron nonferromagnetic gap and defining an apex area that is spaced from the first pole layer by a greater separation than the gap, the throat area meeting the apex area at a throat height; and a plurality of substantially parallel, electrically conductive sections disposed between the first and second pole layers, the conductive sections disposed in a single layer that is aligned along a plane that intersects the pedestal and the backgap region.
摘要:
A read/write head for use in a perpendicular magnetic recording head in a data storage system. The read/write head includes a write section that is comprised of a first pole layer, a second pole layer, a third pole layer, and a shield layer. The third pole layer defines a write pole tip, and the third pole layer and the shield layer are separated from each other to define a write gap therebetween. At least part of the shield layer has a generally uniform width, and wherein the write pole tip defines a track width that is substantially equal to the uniform width of the shield layer. According to one embodiment the entire shield layer has a generally uniform width that is substantially equal to the track width. According to another embodiment, the shield layer includes a lower section and an upper section, wherein the lower section has a generally uniform width along its entire length, and wherein the upper section is wider than the lower section.
摘要:
A magnetic head is disclosed that has first and second substantially flat soft magnetic pole layers that are magnetically coupled together in a backgap region that is removed from the medium-facing surface; a soft magnetic pedestal having a leading edge and a trailing edge, the trailing edge adjoining the second pole layer adjacent to the medium-facing surface, the leading edge defining a throat area that is spaced from the first pole layer by a submicron nonferromagnetic gap and defining an apex area that is spaced from the first pole layer by a greater separation than the gap, the throat area meeting the apex area at a throat height; and a plurality of substantially parallel, electrically conductive sections disposed between the first and second pole layers, the conductive sections disposed in a single layer that is aligned along a plane that intersects the pedestal and the backgap region.