摘要:
The present invention is directed to the fabrication of head sliders for use in hard disk drives, and in particular the provision and usage of electrical bond pads on the slider surface structure to accommodate needs of the fabrication process as well as slider operation within a disk drive.
摘要:
A perpendicular magnetic recording (PMR) writer is configured to magnetically record data on a rotatable disk surface. The PMR writer including a pole tip, side shields, an air-bearing surface (ABS) region, a yoke region comprising Silicon Dioxide (SiO2), side gaps and a plurality of throat regions. The side gaps are arranged respectively between the pole tip and the side shields and include SiO2. A side gap width of the plurality of throat regions increases with a side shield throat height above the ABS region for each of the throat regions. The side gap width has a different width variation in each of the throat regions.
摘要:
A tape head including a body with a tape-bearing surface configured to contact a magnetic tape, at least one transducer that is a read or write element, configured so the tape head may read from or write to the tape, in operation; and a monobloc closure with a structured cross-sectional profile, so as to exhibit: contact part, fixed on a side of the body which adjoins the tape-bearing surface at an edge thereof, the contact part having a top surface level with the tape-bearing surface; and connecting part integral with the contact part, the connecting part having a top surface recessed from the contact part's top surface, perpendicularly to a contact plane defined by the tape-bearing surface, so the connecting part's top surface does not contact the tape, in operation; and a broken line of mechanical weakness that extends at an end of the top surface of the connecting part.
摘要:
A manufacturing method of a write portion for a thermally assisted magnetic head slider includes providing a write portion including a write element, a waveguide, and a plasmon unit; lapping opposed-to-magnetic recording medium surfaces of the write element and the waveguide, and an near-field light generating surface of the plasmon unit; only forming a carbon layer on the opposed-to-magnetic recording medium surface of the write element. Corrosive elements in the write portion can be prevented from being corroded and the write element can be prevented from being worn and abraded not only, stable thermal ability for a plasmon unit can be maintained but also.
摘要:
According to one embodiment, a magnetic head includes a write element, a read element, and a heating element disposed between the write element and the read element. When power is applied to the heating element, either the read element or the write element projects beyond a plane of an air-bearing surface (ABS) of the magnetic head, and when power is not applied to the heating element, a portion of the ABS of the magnetic head facing a magnetic disk close to the heating element has a concave shape. In another embodiment, when power is applied to the heating element, at least one of a portion of the read element and a portion of the write element approaches a magnetic disk, and when power is not applied to the heating element, a portion of the ABS of the magnetic head facing a magnetic disk close to the heating element has a concave shape.
摘要:
A method for forming a write pole comprises the steps of providing a structure comprising a substrate layer, a ruthenium layer over the substrate layer, and a tantalum layer over the ruthenium layer, providing an opening in the tantalum layer over a portion of the ruthenium layer, performing a first reactive ion etching step on the portion of the ruthenium layer under the opening in the tantalum layer to provide an opening in the ruthenium layer over a portion of the substrate layer, performing a second reactive ion etching step on the portion of the substrate layer under the opening in the ruthenium layer to form a damascene trench therein, and filling the damascene trench with a magnetic material to form the write pole.
摘要:
An apparatus for a heat assisted magnetic recording device that includes a write pole, a near-field transducer, and a heat sink. The near-field transducer is comprised only of a peg disposed adjacent the write pole. The heat sink is disposed between the write pole and at least a portion of the near-field transducer.
摘要:
A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited surface plasmons in a plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The optical radiation is transmitted to the plasmon generator by means of a waveguide, whose optical axis (centerline) is tilted relative to either or both the backside surface normal and ABS surface normal in order to eliminate back reflections of the optical radiation that can adversely affect the properties and performance of the laser. Variations of the disclosure include tilting the plasmon generator, the waveguide and the laser diode.
摘要:
A hard bias (HB) structure for producing longitudinal bias to stabilize a free layer in an adjacent spin valve is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x laminated layer. The (Co/Ni)x HB layer deposition involves low power and high Ar pressure to avoid damaging Co/Ni interfaces and thereby preserves PMA. A capping layer is formed on the HB layer to protect against etchants in subsequent process steps. After initialization, magnetization direction in the HB layer is perpendicular to the sidewalls of the spin valve and generates an Mrt value that is greater than from an equivalent thickness of CoPt. A non-magnetic metal separation layer may be formed on the capping layer and spin valve to provide an electrical connection between top and bottom shields.
摘要:
Embodiments disclosed herein provide magnetic media access heads with metal coatings. In a particular embodiment, a magnetic media head for accessing magnetic media comprises a base substrate configured to support a magnetic head layer. The magnetic head layer is formed on the base substrate and configured to magnetically access the magnetic media. A metallic layer formed over the magnetic head layer and disposed between the magnetic head layer and the magnetic media when the magnetic media is positioned for access by the magnetic head layer.