Abstract:
A liquid crystal display device includes a first substrate which comprises a plurality of pixels where a thin film transistor and a pixel electrode electrically connected to the thin film transistor are formed, the first substrate including a gate line and a data line which insulatingly intersect each other; and a gate driver which applies a gate driving signal to the gate line, the thin film transistor including a gate electrode which is connected to the gate line; a source electrode which is connected to the data line; and a drain electrode which is connected to the pixel electrode, and the pixels being decreased in a value of Cp/(Cp+Clc+Cst) as going toward the gate driver (where, Cp: a sum of parasitic capacity between the gate electrode and the source electrode and parasitic capacity between the gate electrode and the drain electrode, Clc: liquid crystal capacity, and Cst: storage capacity).
Abstract:
An application downloading method, an application providing method, and a user terminal using the same. According to the application downloading method, a user terminal transmits user terminal information to a server, receives an application list generated based on the user terminal information, and display the received application list on a screen. Accordingly, the user can download a desired application more easily and simply.
Abstract:
A liquid crystal display device includes a first substrate which comprises a plurality of pixels where a thin film transistor and a pixel electrode electrically connected to the thin film transistor are formed, the first substrate including a gate line and a data line which insulatingly intersect each other; and a gate driver which applies a gate driving signal to the gate line, the thin film transistor including a gate electrode which is connected to the gate line; a source electrode which is connected to the data line; and a drain electrode which is connected to the pixel electrode, and the pixels being decreased in a value of Cp/(Cp+Clc+Cst) as going toward the gate driver (where, Cp: a sum of parasitic capacity between the gate electrode and the source electrode and parasitic capacity between the gate electrode and the drain electrode, Clc: liquid crystal capacity, and Cst: storage capacity).