Abstract:
An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
Abstract:
An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
Abstract:
In order to provide an optical transmission device capable of implementing the spectral control of WDM signals while taking into account optical component characteristics, an optical transmission device is provided with: a WSS; a wavelength monitor that outputs a signal expressing a first spectrum, which is the spectrum of the WSS optical output; an optical processing unit that subjects the WSS optical output to prescribed processing; a temperature monitor that outputs a signal indicating the temperature of an optical processing means; and a control unit that receives the input of the signal expressing the first spectrum and the signal indicating the temperature, and controls the transmission characteristics of the WSS on the basis of the first spectrum and the temperature.
Abstract:
A method for data transport that includes providing a branch terminal between a first and second trunk terminal, wherein a branching unit is present at an intersect between the first and second trunk terminal and the branch terminal. The branching unit includes a reconfigurable add/drop multiplexers (ROADM) at least one attenuator. A signal is sent from a second terminal of the first and second trunk terminal to the branding unit. The signal may include a branch traffic component trunk traffic component. The branching unit includes at least one attenuator for attenuating the trunk traffic component so that the trunk traffic component of the signal cannot be detected at the branch terminal.
Abstract:
Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), and the input signal is split into at least two parts, with one part being associated with one or more trunk terminals and another part being associated with one or more branch terminals. Each of one or more spectrum channels are selected and individually switched to one of a plurality of paths using at least one wavelength selective switch (WSS), with the at least one WSS being configured to transmit the one or more spectrum channels to their respective target output port and to combine signals switched to a specific port into a wavelength division multiplexing (WDM) signal. Individual spectrum channels are filtered out using at least one wavelength blocker (WB).
Abstract:
In order to avoid the phenomenon of communication being impeded and signals transmitted by the plurality of slave devices overlapping, a communication system according to the present invention has the first master device transmits a first pulsed light to the first transmission path and receives a return light of the first pulsed light from the second transmission path; each of the slave devices modulates the first pulsed light, and outputs the modulated first pulsed light as the return light of the first pulsed light; and the width of the first pulsed light is narrower than double the shortest distance from among the transmission distance between the slave device outputting the return light and the transmission distance between the first master device and the slave device outputting the return light.
Abstract:
This power feed line switching circuit for switching connection states among a plurality of power feed lines has a plurality of switching circuits, and a variable resistance unit. The switching circuits switch the connection states among the power feed lines. The variable resistance unit is disposed on the connecting paths among the power feed lines before and after the switching, and the resistance values thereof change in conjunction with operations of the switching circuits.
Abstract:
A method for data transport that includes providing a branch terminal between a first and second trunk terminal, wherein a branching unit is present at an intersect between the first and second trunk terminal and the branch terminal. The branching unit includes a reconfigurable add/drop multiplexers (ROADM) at least one attenuator. A signal is sent from a second terminal of the first and second trunk terminal to the branding unit. The signal may include a branch traffic component trunk traffic component. The branching unit includes at least one attenuator for attenuating the trunk traffic component so that the trunk traffic component of the signal cannot be detected at the branch terminal.
Abstract:
A branching unit includes a supply destination switching section that switches one supply destination of each of a plurality of power lines that supply electric power to a unit that transfers an optical signal received from a terminal station unit through a transmission line to another supply destination corresponding to a control signal received from the terminal station unit; a current detection section that outputs a detection signal that includes information that denotes whether currents are flowing in the plurality of power lines and information that represents current directions if currents are flowing; and a monitor section that transmits a monitored result based on at least one of a plurality of detection signals received from the current detection section to the terminal station unit.
Abstract:
To provide an optical branch coupler which facilitates communizing the design of an optical transmission path, the optical branch coupler comprising: a first add drop unit for outputting a third optical signal to a first line in which a first optical signal received from the first line and a second optical signal inserted into the first line are multiplexed and outputting the first optical signal; and a second add drop unit for receiving the first optical signal, receiving a sixth optical signal from a second line different from the first line in which a fourth optical signal and a fifth optical signal dropped from the second line are wavelength multiplexed, demultiplexing the fourth and fifth optical signals, and outputting a seventh optical signal to the second line in which the fourth optical signal and the first optical signal transmitted by the first add drop unit are multiplexed.