Abstract:
A heat/acoustic wave conversion component includes a plurality of monolithic honeycomb segments each including a partition wall that defines a plurality of cells extending between both end faces, and the plurality of monolithic honeycomb segments each mutually converts heat exchanged between the partition wall and the working fluid in the cells and energy of acoustic waves resulting from oscillations of the working fluid. In the heat/acoustic wave conversion component including the plurality of honeycomb segments each being monolithic configured, hydraulic diameter HD of the cells is 0.4 mm or less, open frontal area of the honeycomb segments is 60% or more and 93% or less, heat conductivity of the honeycomb segments is 5 W/mK or less, and a ratio HD/L of the hydraulic diameter HD to the length L of the honeycomb segment is 0.005 or more and less than 0.02.
Abstract:
The honeycomb structure forming die includes a first die in which a central region on the side of a kneaded material discharging surface has a convex region projecting toward a downstream side in an extruding direction of a kneaded material, and a ring-shaped second die. In the first die, first kneaded material introducing holes are formed and latticed first slits are formed on the side of the kneaded material discharging surface of the convex region, and in the second die, there are formed second kneaded material introducing holes and latticed second slits communicating with the second kneaded material introducing holes, and the honeycomb structure forming die has a groove region where movement of the kneaded material is performed between the first kneaded material introducing hole and the second kneaded material introducing hole, in abutment surfaces of the first die and the second die.
Abstract:
In the adjusting method of the extrusion rate, a perforated plate is superimposed on and attached to a forming die, the perforated plate includes a plurality of through hole portions, the adjusting method includes a perforated plate group consisting of a plurality of perforated plates which are different in degree of diameter decrease of the hole diameter, and the adjusting method includes a trial extrusion step of extruding the forming material to form a trial honeycomb formed body, a shape measuring step of measuring a shape of a formed body end face of the trial honeycomb formed body, and a perforated plate selecting step of selecting the perforated plate to be suitably attached to the forming die.
Abstract:
A heat/acoustic wave conversion component having a first end face and a second end face, includes a partition wall that defines a plurality of cells extending from the first end face to the second end face, inside of the cells being filled with working fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the working fluid and energy of acoustic waves resulting from oscillations of the working fluid. Hydraulic diameter HD of the heat/acoustic wave conversion component is 0.4 mm or less, where the hydraulic diameter HD is defined as HD=4×S/C, where S denotes a cross-sectional area of each cell perpendicular to the cell extending direction and C denotes a perimeter of the cross section, and the heat/acoustic wave conversion component has three-point bending strength of 5 MPa or more.
Abstract:
A heat/acoustic wave conversion unit includes a heat/acoustic wave conversion component and two heat exchangers. Hydraulic diameter HD of the cells in the heat/acoustic wave conversion component is 0.4 mm or less, and a ratio HD/L of HD to the length L of the heat/acoustic wave conversion component is from 0.005 to 0.02. One of the heat exchangers includes a heat-exchanging honeycomb structure and an annular tube that surrounds a circumferential face of the heat-exchanging honeycomb structure. The annular tube includes a structure body that is disposed in the channel to increase a contact area with the heated fluid, an inflow port into which the heated fluid flows, and an outflow port through which the heated fluid flows out. At least one of the heat-exchanging honeycomb structure and the structure body is made of a ceramic material that contains SiC as a main component.
Abstract:
The honeycomb structure forming die includes a first die in which a central region on the side of a kneaded material discharging surface has a convex region projecting toward a downstream side in an extruding direction of a kneaded material, a ring-shaped second die, and a reticulated member interposed between the first die and the second die. In the first die, first kneaded material introducing holes are formed and latticed first slits are formed on the side of the kneaded material discharging surface of the convex region, and in the second die, there are formed second kneaded material introducing holes and latticed second slits communicating with the second kneaded material introducing holes, and movement of a kneaded material is performed between the first kneaded material introducing hole and the second kneaded material introducing hole through meshes of the reticulated member.
Abstract:
The honeycomb structure forming die includes a first die in which a central region on the side of a kneaded material discharging surface has a convex region projecting toward a downstream side in an extruding direction of a kneaded material, a ring-shaped second die, and a space forming member interposed between the first die and the second die. In the first die, first kneaded material introducing holes are formed and latticed first slits are formed on the side of the kneaded material discharging surface of the convex region, and in the second die, there are formed second kneaded material introducing holes and latticed second slits communicating with the second kneaded material introducing holes, and in a space formed by the space forming member, movement of a kneaded material is performed between the first kneaded material introducing hole and the second kneaded material introducing hole.
Abstract:
A die has two surfaces, in a forming material supplying surface which is one surface, a plurality of back holes to introduce a forming material of a honeycomb formed body into the die are formed, and in a honeycomb formed body extruding surface which is the other surface, lattice-shaped slits corresponding to cell partition walls are formed, the back holes communicate with the slits in slit intersecting portions of the slits, polygonal cell blocks defined by the slits include chamfered portions in which parts of corner portions and the like are chamfered at a chamfering angle θ of 1.0 to 8.0° to the extruding direction, from the honeycomb formed body extruding surface toward a slit depth direction, and straight portions which are not chamfered, and a ratio of a length L of the straight portion to a slit depth D is from 20 to 60%.
Abstract:
A heat/acoustic wave conversion component includes a partition wall that defines a plurality of cells, inside of the cells being filled with fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the fluid and energy of acoustic waves resulting from oscillations of the fluid. The plurality of cells have an average of hydraulic diameters HDs that is 0.4 mm or less in a plane perpendicular to the cell extending direction, the heat/acoustic wave conversion component has an open frontal area at each end face of 60% or more and 93% or less, and distribution of hydraulic diameters HDs of the plurality of cells has relative standard deviation that is 2% or more and 30% or less.